首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bovine milk fat contains a large variety of structurally different fatty acids. In this study, we describe the presence of aromatic fatty acids in a butter fat sample. Fatty acids were released from butter fat and converted into the corresponding methyl esters (FAME). Urea complexation was used to separate the main saturated fatty acids. GC/MS screening of the FAME in the filtrate of the urea complexation indicated the presence of aromatic fatty acids. By (1) conversion of two representatives into picolinyl esters which were analyzed by GC/MS, (2) linear log tR over carbon number plots (R2 = 0.95) and by the use of two reference standards we were able to show that the phenyl unit was located on the terminal carbon of the straight acyl chain of the FAME. In a fraction gathered by countercurrent chromatography we were able to identify 3‐phenylpropionic acid (Ph‐3:0), 4‐phenylbutyric acid (Ph‐4:0), 5‐phenylpentanoic acid (Ph‐5:0), 6‐phenylhexanoic acid (Ph‐6:0), 7‐phenylheptanoic acid (Ph‐7:0), 8‐phenyloctanoic acid (Ph‐8:0), 9‐phenylnonanoic acid (Ph‐9:0), 10‐phenyldecanoic acid (Ph‐10:0), 11‐phenylundecanoic acid (Ph‐11:0), 12‐phenyldodecanoic acid (Ph‐12:0), 13‐phenyltridecanoic acid (Ph‐13:0), along with one unsaturated phenyldecenoic acid (Ph‐10:1) isomer. Preliminary results indicate that the aromatic fatty acids may have been formed exogenously in the rumen of the cows. The total amount of the aromatic fatty acids was estimated at 0.15 mg/g butter fat, which corresponds with an average daily intake of ~5 mg per day in Germany and ~4.4 mg per day in Europe.  相似文献   

2.
Diphenylamine sulfate (DPAS) and diphenylamine hydrochloride (DPACl) salts were found to be highly active catalysts for esterification and substantial transesterification of inexpensive greases to fatty acid methyl esters (FAME). In the presence of catalytic amounts of DPAS or DPACl and excess methanol, the free fatty acids as well as the acylglycerols in waste greases were converted to FAME at 125 °C within 1 h. Although the DPAS and DPACl catalysts were found to have similar catalytic activities to their parent liquid acids (i.e., sulfuric and hydrochloric acids) the diphenylammonium salts are much easier to work with than concentrated liquid acids.  相似文献   

3.
Acid oil, a by-product of vegetable oil refining, was enzymatically converted to fatty acid methyl esters (FAME). Acid oil contained free fatty acids (FFA), acylglycerols, and lipophilic compounds. First, acylglycerols (11 wt%) were hydrolyzed at 30 °C by 20 units Candida rugosa lipase/g-mixture with 40 wt% water. The resulting oil layer containing 92 wt% FFA was used for the next reaction, methyl esterification of FFA to FAME by immobilized Candida antarctica lipase. A mixture of 66 wt% oil layer and 34 wt% methanol (5 mol for FFA) were shaken at 30 °C with 1.0 wt% lipase. The degree of esterification reached 96% after 24 h. The resulting reaction mixture was then dehydrated and subjected to the second esterification that was conducted with 2.2 wt% methanol (5 mol for residual FFA) and 1.0 wt% immobilized lipase. The degree of esterification of residual FFA reached 44%. The degree increased successfully to 72% (total degree of esterification 99%) by conducting the reaction in the presence of 10 wt% glycerol, because water in the oil layer was attracted to the glycerol layer. Over 98% of total esterification was maintained, even though the first and the second esterification reactions were repeated every 24 h for 40 days. The enzymatic process comprising hydrolysis and methyl esterification produced an oil containing 91 wt% FAME, 1 wt% FFA, 1 wt% acylglycerols, and 7 wt% lipophilic compounds.  相似文献   

4.
Biodiesel is a biofuel obtained from vegetable oils. The oils used as raw materials are usually refined edible vegetable oils. Nonedible acidic oils are unsuitable for biodiesel production unless reduction of the high content in free fatty acids (FFA) of these materials had been achieved. Obtaining a good raw material from unprofitable oils becomes an important research field. Additionally clays have a long history in industrial sorption and catalysis, some being commercially available and with properties that can be modified. In this work we present the results of the use of the montmorillonite clay K10 and two acid modified clays K10(I) and K10(II), in the esterification of stearic acid with methanol and 95 % of methyl stearate was obtained with K10(II). These clays were then used for the first time to reduce the acidity of enhanced FFA sunflower oil and they show to be very effective. Reduction of FFA from 11 to 4 % was obtained with K10(II) mainly due to 94 % conversion of FFA into fatty acid methyl esters (FAME). These clays were also tested with two waste oils, one from domestic use and the other gathered from different restaurants, and showed their ability to lower the acidity of these oils. Reactions were followed by 1H NMR as well as quantitative determination of FFA and FAME. Clays were characterized by FTIR and XRD.  相似文献   

5.
Highly unsaturated fatty acids (HUFA), including eicosapentaenoic acid (EPA, 20:5n‐3), docosapentaenoic acid (DPA, 22:5n‐3 and 22:5n‐6) and docosahexaenoic acid (DHA, 22:6n‐3), play an important role in human health and nutrition. In this study, concentration of HUFA in free fatty acids (FFA) form by low‐temperature crystallization was investigated. For this purpose, tuna oil (7.1% EPA, 26.8% DHA) was first converted into corresponding FFA. Subsequently, crystallization conditions of various solvent types, the ratio of FFA to acetonitrile, operation temperature and crystallization time were optimized at a small scale of 2 g tuna oil fatty acids. Taking purity and yield into account, the optimum conditions were a 1:10 ratio of FFA to acetonitrile (w/v), ?60 °C, and 1 h. The optimal conditions resulted in concentrations of EPA, DHA and HUFA of 15.1, 58.4 and 79.6%, respectively, with corresponding yields of 61.5, 61.8 and 60.7%, respectively. Crystallization was carried out under the optimal conditions at a large scale of 200 g tuna oil FFA, and a similar concentration result was achieved. After evaporating away the solvent, the residual amount of acetonitrile met the US Pharmacopoeia requirement of <410 ppm. The process for enrichment of HUFA is readily scalable, effective and time‐saving.  相似文献   

6.
Kinematic viscosity (µ) is an important physical property of fatty acid methyl esters (FAME) and biodiesel. In this work, the Martin's rule of free energy additivity is extended to cover the kinematic viscosity of saturated and unsaturated FAME commonly found in nature. The proposed model can also be extended to estimate kinematic viscosity of biodiesel. The kinematic viscosity of a FAME or a biodiesel can be easily estimated from its carbon number (z), number of double bonds (nd) at different temperatures (T) without a prior knowledge of the viscosity of individual FAME. Both zave and nd(ave) can be derived from its fatty acid composition. Thus, kinematic viscosity of biodiesel at temperatures between 20 and 100 °C and at atmospheric pressure can be estimated. The average absolute deviation (AAD) estimated at 20–100 °C for saturated, unsaturated FAME, biodiesels and biodiesel blends are 4.15, 3.25, 6.95 and 2.79 %, respectively. The biodiesels collected in this study (191 data points) have the zave and nd(ave) between 14.10 and 17.96 and 0.21–1.54, respectively. The standard deviation was 0.249. The proposed model would be good for estimation of viscosity of biodiesel containing normal fatty acids, generally found in biodiesel feed stocks.  相似文献   

7.
We report a simple method that efficiently esterifies the fatty acids in soapstock, an inexpensive, lipid-rich by-product of edible oil production. The process involves (i) alkaline hydrolysis of all lipid-linked fatty acid ester bonds and (ii) acid-catalyzed esterification of the resulting fatty acid sodium salts. Step (i) completely saponified all glycerides and phosphoglycerides in the soapstock. Following water removal, the resulting free fatty acid sodium salts were rapidly and quantitatively converted to fatty acid methyl esters (FAME) by incubation with methanol and sulfuric acid at 35°C and ambient pressure. Minimum molar reactant ratios for full esterification were fatty acids/methanol/sulfuric acid of 1∶30∶5. The esterification reaction was substantially complete within 10 min and was not inhibited by residual water contents up to ca. 10% in the saponified soapstock. The product FAME contained >99% fatty acid esters, 0% triglycerides, <0.05% diglycerides, <0.1% monoglycerides, and <0.8% free fatty acids. Free fatty acid levels were further reduced by washing with dilute sodium hydroxide. Free and total glycerol were <0.01 and <0.015%, respectively. The water content was <0.04%. These values meet the current specifications for biodiesel, a renewable substitute for petroleum-derived diesel fuel. The identities and proportions of fatty acid esters in the FAME reflected the fatty acid content of soybean lipids. Solids formed during the reaction contained 69.1% ash and 0.8% protein. Their sodium content indicated that sodium sulfate was the prime inorganic component. Carbohydrate was the predominant organic constituent of the solid.  相似文献   

8.
Production of diacylglycerol-enriched oil by esterification of free fatty acids (FFA) with glycerol (GLY) using phospholipase A1 (Lecitase Ultra) was investigated in this work. The variables including reaction time (2–10 h), water content (2–14 wt%, FFA and GLY mass), enzyme load (10–120 U/g, FFA and GLY mass), reaction temperature (30–70 °C) and mole ratio of GLY to FFA (0.5–2.5) were studied. The optimum conditions obtained were as follows: reaction temperature 40 °C, water content 8 wt%, reaction time 6 h, molar ratio of GLY to FFA 2.0, and an enzyme load of 80 U/g. Under these conditions, the esterification efficiency (EE) of free fatty acids was 74.8%. The compositions of the FFA and acylglycerols of the upper oil layer (crude diacylglycerol) of the reaction mixture were determined using a high temperature gas chromatograph (GC). The crude diacylglycerol from the selected conditions was molecularly distilled at 170 °C evaporator temperatures to produce a diacylglycerol-enrich oil (DEO) with a purity of 83.1% and a yield of 42.7%.  相似文献   

9.
Several marine oils and seed oils on the market contain relevant quantities of stearidonic acid (18:4n‐3, SDA). The formation of 18:4n‐3 trans fatty acids (tFA) during the refining of these oils necessitates the development of a method for their quantification. In this study, 18:4n‐3 was isolated from Ahiflower and isomerized to obtain its 16 geometric isomers. The geometric isomers of 18:4n‐3 were isolated by silver ion HPLC (Ag+‐HPLC) and characterized by partial reduction with hydrazine followed by gas chromatography analysis. The elution order of all 16 isomers was established using a 100 m × 0.25 mm 100% poly(biscyanopropyl siloxane) capillary column and at the elution temperature of 180 °C. The 4 mono‐trans‐18:4n‐3 isomers produced during the refining of oils rich in 18:4n‐3 were chromatographically resolved from each other, but c6,t9,c12,c15‐18:4 coeluted with the tetra‐cis isomer. These 2 fatty acids (FA) were resolved by reducing the separation temperature to 150 °C, but this change caused tetra‐cis‐18:4n‐3 to coelute with t6,c9,c12,c15–18:4. Combining the results from 2 isothermal separations (180 and 150 °C) was necessary to quantify the 4 mono‐trans 18:4n‐3 FA in Ahiflower oil.  相似文献   

10.
Two improved methods have been developed for preparation of fatty acid methyl esters (FAME) from major O-ester lipid classes in blood, i.e., cholesterol ester, triacylglycerol, and glycerophospholipids. The methods involve simple operations, and use neither harmful solvents such as chloroform or benzene nor highly reactive volatile reagents such as acetyl chloride. The FAME synthesis reaction proceeds under mild temperature conditions. The methods include (1) extraction of lipids from 0.2 ml of blood with 0.2 ml of tert-butyl methyl ether and 0.1 ml of methanol, (2) separation of the total lipids into lipid classes using a solid-phase extraction column or thin-layer chromatography, and (3) methanolysis of each lipid class at room temperature or at 45 °C. In all the operations, solvent concentration is performed only once prior to gas–liquid chromatography (GC). No noticeable differences in composition determined by GC have been found between FAME prepared by the present methods and those prepared by a conventional method involving lipid extraction with chloroform/methanol. The mild reaction and simplified procedures of the present methods enabled safe and reproducible analysis of the fatty acid compositions of the major ester-lipid classes in blood.  相似文献   

11.
In the present study, we investigated the production of fatty acid methyl esters (FAME) from moist Chlorella sp. and Nannochloropsis oculata biomass using a hydrolysis–esterification process. Additionally, we evaluated for the first time the fatty acid profile before and after this process. Hydrolysis of the lipid fraction was performed on a moist biomass in the presence of differing amounts of an acid catalyst in both 50 and 100 % w/w water relative to the biomass. The esterification of the crude extracts of the free fatty acids (FFA) was then investigated. The experiments show that in the presence of 50 % w/w water relative to the biomass, the hydrolysis–esterification process results in higher FFA and FAME yields. The analysis of the fatty ester profiles did not reveal any degradation of the FFA from the microalgae biomass under the hydrolysis–esterification conditions. The results were compared with both extraction–transesterification and direct transesterification processes using dry biomass. The extraction–transesterification and hydrolysis–esterification processes resulted in similar FAME yields and similar profiles of the fatty esters from dry and moist biomass materials, respectively.  相似文献   

12.
A comprehensive and accurate determination of free fatty acids (FFA) is required for fecal metabolomic investigations. The present study compares three aqueous extraction methods (1) ULTRA‐TURRAX®, (2) whirl mixing and (3) basic ULTRA‐TURRAX extraction of fecal FFA with a direct derivatization approach using ethyl chloroformate as the derivatization reagent before determination by gas chromatography–mass spectrometry. The direct derivatization method resulted in significantly higher estimations (P < 0.01) of short‐ and long‐chain fatty acids than was the case when applying the aqueous extraction methods using ULTRA‐TURRAX, whirl mixing, or basic ULTRA‐TURRAX extraction before the derivatization step. Thus, avoiding an aqueous extraction before derivatization reduces the loss of volatile short‐chain FFA and the less water‐soluble long‐chain FFA.  相似文献   

13.
Enrichment of the omega-3 (n-3) fatty acids of refined hoki oil (RHO) intact triglycerides (TG) and via free fatty acids (FFA), was carried out in the present study using established methods of dry fractionation (DF), low temperature solvent crystallization (LTSC) and urea complexation (UC) and positional distribution of fatty acids in the intact TG was determined by Nuclear Magnetic Resonance (NMR) analysis. Results showed that n-3 fatty acids were enriched in liquid fractions of all methods except DF, where the highest concentration was obtained via the UC method (83.00 %). The FFA form of the oil produced a higher concentration (40.81 %) of n-3 fatty acids via the LTSC method compared to the TG form (31.50 %). The percentages of the total saturated fatty acid (SFA) in the liquid fractions in all methods were lower, ranging from 1.60 % (UC) to 21.44 % (DF) compared to the RHO parent oil (24.05 %). The percentages of total monounsaturated fatty acids (MUFA) in the liquid fractions were similar to the solid fractions except for the UC method where total MUFA was six times higher in the solid fraction. In LTSC-FFA and UC methods, the enrichment factor for EPA was lower, ranging from 1.61 (LTSC-FFA) to 2.83 (UC), than DHA which ranged from 1.64 (LTSC-FFA) to 3.88 (UC). EPA was preferentially located at the sn-1,3 position and DHA was significantly located at the sn-2 position which is the favoured location for intestinal digestion.  相似文献   

14.
A 30-min, micro-base-catalyzed method for vegetable oil fatty acid methyl ester (FAME) preparation was developed using only 1 mg of oil sample by limiting the solvent volumes used. This method was primarily developed to quickly analyze fatty acid composition of CLA-rich soy oil but can be further applicable to pure vegetable oils. Existing base-catalyzed FAME preparation methods are not appropriate to use because they are either rapid but not micro, or micro but not rapid, or are rapid and micro but use acidification in the final step of FAME preparation, which would isomerize oils containing conjugated fatty acids. Serial dilutions of a mixed commercial FAME reference standard were prepared and analyzed by GC with a flame ionization detector (FID) with maximum instrument sensitivity. The novel method was also used to prepare soy oil FAMEs for GC-FID analysis. There were no statistically significant differences (P < 0.05) in fatty acid data from the FAME reference standard dilutions. Similarly, there was no statistical significant difference (P < 0.05) between results obtained for all the soy oil dilutions and the control method. This technique is a rapid method for preparing small pure oil samples as FAMEs for GC-FID analysis.  相似文献   

15.
Furan fatty acids (F‐acids) are a class of natural antioxidants with a furan moiety in the acyl chain. These minor fatty acids have been reported to occur with high proportions in the cholesteryl ester fraction of fish livers. Here we present a method for the direct analysis of intact cholesteryl esters with F‐acids and other fatty acids in cod liver lipids. For this purpose, the cholesteryl ester fraction was isolated by solid phase extraction (SPE) and subsequently analyzed by gas chromatography with mass spectrometry (GC/MS) using a cool‐on‐column inlet. Pentadecanoic acid esterified with cholesterol was used as an internal standard. GC/MS spectra of F‐acid cholesteryl esters featured the molecular ion along with characteristic fragment ions for both the cholesterol and the F‐acid moiety. All investigated cod liver samples (n = 8) showed cholesteryl esters of F‐acids and, to a lower degree, of conventional fatty acids. By means of GC/MS‐SIM up to ten F‐acid cholesteryl esters could be determined in the samples. The concentrations of cholesteryl esters with conventional fatty acids amounted to 78–140 mg/100 g lipids (mean 97 mg/100 g lipids), while F‐acid cholesteryl esters were present at 47–270 mg/100 g lipids (mean 130 mg/100 g lipids).  相似文献   

16.
The stability of unsaturated fatty acids to oxidation was monitored by following gas chromatographic (GC) analyses of headspace volatiles in comparison to changes in polyunsaturated fatty acids (PUFA) and increases in malonaldehydevia the 2-thiobarbituric (TBA) assay. Pure standards of linoleic acid (Lo) and n-3 fatty acids [eicosapentaenoic (EPA) and docosahexaenoic acid (DHA)] were added to headspace vials, equilibrated in air for 10 min, followed by heating at 80°C in teflon-capped vials for different time intervals. Headspace analysis showed increases in acetaldehyde, propenal, and propanal, corresponding to the oxidation of n-3 fatty acids, whereas hexanal production corresponded to losses of linoleic acid. The analysis of propanal by GC-headspace after only five minutes of heating appeared to be the most effective method of monitoring the oxidation of n-3 fatty acids, as indicated by correlations between TBA values and loss of PUFA. The oxidation of Lo, EPA and DHA appeared to be a function of the number of double bonds. Correlations between PUFA depletion, TBA values and volatile formation indicate that under the prescribed conditions of this experiment, GC-headspace analysis of propanal and pentane/hexanal is an excellent method for following the oxidation of selected n-3 fatty acids and linoleic acid.  相似文献   

17.
Enzymatic hydroxylation of fatty acids by Cytochrome P450s (CYPs) offers an eco-friendly route to hydroxy fatty acids (HFAs), high-value oleochemicals with various applications in materials industry and with potential as bioactive compounds. However, instability and poor regioselectivity of CYPs are their main drawbacks. A newly discovered self-sufficient CYP102 enzyme, BAMF0695 from Bacillus amyloliquefaciens DSM 7, exhibits preference for hydroxylation of sub-terminal positions (ω-1, ω-2, and ω-3) of fatty acids. Our studies show that BAMF0695 has a broad temperature optimum (over 70 % of maximal enzymatic activity retained between 20 to 50 °C) and is highly thermostable (T50 >50 °C), affording excellent adaptive compatibility for bioprocesses. We further demonstrate that BAMF0695 can utilize renewable microalgae lipid as a substrate feedstock for HFA production. Moreover, through extensive site-directed and site-saturation mutagenesis, we isolated variants with high regioselectivity, a rare property for CYPs that usually generate complex regioisomer mixtures. BAMF0695 mutants were able to generate a single HFA regiosiomer (ω-1 or ω-2) with selectivities from 75 % up to 91 %, using C12 to C18 fatty acids. Overall, our results demonstrate the potential of a recent CYP and its variants for sustainable and green production of high-value HFAs.  相似文献   

18.
Current research investigating the effect of specific aquatic microenvironments on the formation of adipocere using domesticated pigs (Sus scrofa) has demonstrated the need for a fast and reliable method to separate and identify fatty acids present in adipocere. Adipocere is defined as a late‐stage post‐mortem decomposition product consisting of a mixture of free fatty acids (FFA), which have formed under favorable conditions due to the hydrolysis of triglycerides in adipose tissue. Whilst good separations of adipocere lipids have been achieved using TLC, this method is time consuming when processing large numbers of samples. This paper describes a rapid and simple method for the extraction, identification and quantification of FFA commonly found in adipocere, by solid‐phase extraction (SPE) using aminopropyl disposable columns in combination with GC/MS. The recoveries of FFA associated with adipocere were all above 90%, with coefficients of variation below 10%, indicating that the technique was reproducible. The limits of quantification were registered at levels of parts per million. Standard curves were linear over the range of 50–1000 µg/mL, with all correlation coefficient values greater than 0.998. A marked increase in concentration of saturated fatty acids was observed during adipocere formation, ranging from 20 to 55% for palmitic acid, 13 to 23% for stearic acid and 2.8 to 4.1% for myristic acid. These results demonstrate the suitability of aminopropyl disposable SPE columns to efficiently and rapidly isolate FFA from adipocere prior to quantitative GC/MS analysis.  相似文献   

19.
The purpose of this study is to develop and validate a method based on size-exclusion chromatography (SEC) for the simultaneous determination of fatty acid methyl esters (FAME), monoacylglycerols (MAG), diacylglycerols (DAG), and triacylglycerols (TAG) in biodiesel. The proposed method presents good linearity. The limits of detection are 0.26% mass for FAME, 0.02% mass for MAG, 0.01% mass for DAG, and 0.02% mass for TAG. The limits of quantification are 0.78% mass for FAME, 0.06% mass for MAG, 0.01% mass for DAG, and 0.06% mass for TAG. Accuracy evaluated by recovery yielded values ranging from 98.93% to 117.67%. Precision is evaluated by repeatability (%), which is ranged from 0.03% to 13.67%. The proposed SEC method proves effective in determining the FAME, MAG, DAG, and TAG content of standard samples, and the paired t-test shows that the results obtained were statistically similar to the gas chromatography (GC) values. The method also has some advantages over the reference GC methods, since it obtains the content for each class analyzed, irrespective of its components. Also, it does not require derivatization, which makes it easier and also quicker (15 min) than the 60 min taken by the two reference methods, and it does not need an internal standard, which makes it cheaper. Practical Applications: Size exclusion chromatography (SEC) is an efficient method for simultaneous and quantitative determination of fatty acid methyl esters (FAME), monoacylglycerols (MAG), diacylglycerols and triacylglycerols (TAG). The method present itself as an alternative to reference methods (ASTM D 6584 and ABNT NBR 15764) based on gas chromatography (GC). The proposed method shows advantages compared to reference methods, once it makes possible to determine the content of each constituent class in samples, regardless of its components, what makes the peak integration easier. Beyond that, previous sample derivatization is unnecessary, what makes the method simpler, cheaper and faster (15 min) than both reference methods that demands together 60 min for analysis (ASTM D 6584 for MAG, DAGa and TAG and ABNT NBR 15764 for FAME analysis).  相似文献   

20.
Biodiesel (BD), typically consisting of fatty acid methyl esters (FAME), has received much attention because it is a renewable biofuel that contributes little to global warming compared to petroleum-based diesel fuel. The most common method used for BD production is based on the alkali-catalyzed transesterification of first-use refined oils and fats with an alcohol (e.g. methanol). These technologies, however, require significant modification when applied to second use materials such as greases because of their higher free fatty acid (FFA) content. Recently, we reported a series of insoluble porous polymer grafted diphenylammonium salts that efficiently esterified the FFA in greases to FAME. In this work, the diphenylammonium salts were supported onto two robust mesoporous silicas. The resulting catalysts had high esterification activity with >99% of the FFA in greases converted to FAME, and the FFA content in the treated greases was reduced to <1 wt%. The mesoporous silica-supported catalysts displayed minimal transesterification activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号