首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bioactive and biocompatible porous scaffold materials with adjustable pore structures and drug delivery capability are one of the key elements in bone tissue engineering. In this work, bioactive and biocompatible sodium alginate (SA)/hydroxyapatite (HAP) macroporous scaffolds are facilely and effectively fabricated based on 3D printing of the pre‐crosslinked SA/HAP hydrogels followed by further crosslinking to improve the mechanical properties of scaffolds. The pore structures and porosity (>80%) of the porous scaffolds can be readily tailored by varying the formation conditions. Furthermore, the in vitro biomineralization tests show that the bioactivity of the porous scaffolds is effectively enhanced by the addition of HAP nanoparticles into the scaffold matrix. Furthermore, the anti‐inflammatory drug curcumin is loaded into the porous scaffolds and the in vitro release study shows the sustainable drug release function of the porous scaffolds. Moreover, mouse bone mesenchymal stem cells (mBMSCs) are cultured on the porous scaffolds, and the results of the in vitro biocompatibility experiment show that the mBMSCs can be adhered well on the porous scaffolds. All of the results suggest that the bioactive and biocompatible SA/HAP porous scaffolds have great application potential in bone tissue engineering.  相似文献   

2.
Inducing differentiation of bone marrow stem cells to generate new bone tissue is highly desirable by controlling the release of some osteoinductive or osteoconductive factors from porous scaffolds. In this study, dexamethasone was selected as a representative of small molecule drugs and dexamethasone‐loading porous poly(lactide‐co‐glycolide) (PLGA) scaffolds were successfully fabricated by supercritical CO2 foaming. Scanning electron microscopy images showed that scaffolds had rough and relatively interconnected pores facilitating cells adhesion and growth. Specially, dexamethasone which was incorporated into PLGA matrix in a molecularly dispersed state could serve as a nucleation agent to be helpful for the formation of interconnected pores. Dexamethasone‐loading porous PLGA scaffolds exhibited sustained release profile, and the delivery of dexamethasone from porous scaffolds could last for up to 2 months. The cumulative released amount of dexamethasone was relevant with drug loading capacity (1.66%–2.95%) and pore structure of scaffolds; while the release behavior was anomalous (non‐Fickian) transport by fitting with the simple exponential equation, which had a diffusional exponent n higher than 0.5. It is feasible to fabricate drug‐loading porous scaffolds by supercritical CO2 foaming with specific pore structure and sustained release profile, which can be well applied in bone tissue engineering. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46207.  相似文献   

3.
《Ceramics International》2017,43(6):4794-4802
This study conducts a comprehensive assessment of shape memory polyurethane (SMPU) composite foams with isocyanate-modified hydroxyapatite (imHA) nanoparticles in terms of their pore structures, mechanical properties, shape memory effects and biocompatibility in vitro. The results obtained in the research reveal the effectiveness of imHA nanoparticles in SMPU foams as inorganic cross-linking fillers, which contribute to the enhancement of mechanical properties and shape memory performance. Pore structures and compressive properties are simultaneously optimized when imHA content increases. The imHA enhanced SMPU foam could be adopted as a promising alternative for overcoming the disadvantages of traditional polymer scaffolds, such as insufficient mechanical properties, inadequate pore structure, low bioactivity and inconvenience in operation for bone regeneration.  相似文献   

4.
The use of porous three-dimensional (3D) composite scaffolds has attracted great attention in bone tissue engineering applications because they closely simulate the major features of the natural extracellular matrix (ECM) of bone. This study aimed to prepare biomimetic composite scaffolds via a simple 3D printing of gelatin/hyaluronic acid (HA)/hydroxyapatite (HAp) and subsequent biomineralization for improved bone tissue regeneration. The resulting scaffolds exhibited uniform structure and homogeneous pore distribution. In addition, the microstructures of the composite scaffolds showed an ECM-mimetic structure with a wrinkled internal surface and a porous hierarchical architecture. The results of bioactivity assays proved that the morphological characteristics and biomineralization of the composite scaffolds influenced cell proliferation and osteogenic differentiation. In particular, the biomineralized gelatin/HA/HAp composite scaffolds with double-layer staggered orthogonal (GEHA20-ZZS) and double-layer alternative structure (GEHA20-45S) showed higher bioactivity than other scaffolds. According to these results, biomineralization has a great influence on the biological activity of cells. Hence, the biomineralized composite scaffolds can be used as new bone scaffolds in bone regeneration.  相似文献   

5.
Chitosan/hydroxyapatite (CS/HA) bone repair scaffolds crosslinked by glutaraldehyde (GA) were prepared. Characterization of morphology, structure, mechanical property, and porosity of scaffolds were evaluated. The influences of CS viscosity, HA content, and crosslinking degree on properties of scaffolds were discussed. SEM images showed that CS/HA scaffolds were porous with short rod‐like HA particles dispersing evenly in CS substrate. When [η]CS = 5.75 × 10?4, HA content = 65%, and crosslinking degree = 10%, the resulting CS/HA scaffolds had a flexural strength of 20 MPa and porosity of 60%, which could meet the requirements of bone repair materials. The scaffolds were used as drug carriers for icariin, and the impacts of loading time and crosslinking degree of scaffolds on drug‐loading dose were discussed. The suitable loading time was 24 h and it would be better to keep crosslinking degree no more than 10%. The drug release behavior demonstrated that the icariin‐loading CS/HA scaffolds could achieve basic drug sustained release effect. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1539–1547, 2013  相似文献   

6.
The effective and locally sustained delivery of hydrophobic drug with hydrogels as carriers is still a challenge owing to the inherent incompatibility of hydrophilic hydrogel network and hydrophobic drug. One promising approach is to use porous hydrogels to encapsulate and deliver hydrophobic drug in the form of nanoparticles to the disease sites. However, this approach is currently limited by the inability to load concentrated hydrophobic drug nanoparticles into the hydrogels because of the severe nanoparticle aggregation during the loading process. In this article, we firstly designed and fabricated efficient drug nanoparticles embedded hydrogels for hydrophobic drug delivery by incorporating monodisperse silybin (hydrophobic drug for liver protection) nanoparticles into acrylated hyaluronic acid (HA‐AC) based hydrogels through in situ cross‐linking. The silybin nanoparticles embedded hydrogel scaffolds proved to be a good sustained release system with a long period of 36 h. The drug release from this hybrid hydrogels could be modulated by tuning HA‐AC concentration, cross‐linking ratio, chain length of cross‐linker and drug loading amount. The different kinetic models were applied, and it was observed that the release profile of silybin best followed the Hixson‐Crowell model for the release of drug from the hydrogels embedding silybin nanoparticles. It could be envisioned that this process would significantly advance the potential applications of hydrogel scaffolds mediated hydrophobic drug delivery in clinical therapies. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43111.  相似文献   

7.
《Ceramics International》2020,46(15):24102-24109
Replacement and regeneration of damaged bone, particularly for those defects with critical size, are still major challenges in orthopaedic surgery. The conventional bone implants, normally with poor internal architecture design, may cause significant issues owing to the mechanical and structural mismatches between target bone and the implants. In this work, as inspired by hierarchical natural bone, for the first time, we developed hydroxyapatite (HA) and beta-tricalcium phosphate (β-TCP) scaffolds with three-level hierarchical structures across macro to nano scale using combined 3D printing (3DP) and freeze casting routines. It is clear these hierarchical porous scaffolds significantly enhance cell penetration (over 7 times) while maintaining cell proliferation ability. With three levels of hierarchies, the overall mechanical behaviour of the scaffolds can be tailored to be comparable to general cancellous bone (ranging from 1 to 6 MPa), demonstrating great potential for practical applications. Additionally, the combination of nanoindentation and mechanics model makes it possible to predict the mechanical behaviour of scaffolds at micro and macro scales.  相似文献   

8.
Highly porous scaffolds have been fabricated by the replication technique using 45S5 Bioglass® (BG) powder. For the purpose of imparting a local drug release capability, the scaffolds were coated with polycaprolactone and vancomycin-loaded chitosan by a two-step procedure. Bare BG scaffolds loaded with vancomycin via a direct immersion method were used as control. The chemical composition and microstructure of bare and coated scaffolds were characterized through Fourier-transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM), respectively. The mechanical properties of the coated scaffolds were significantly improved compared with uncoated scaffolds; the compressive strength values of the coated scaffolds were about 3 times and the area under the stress–strain curve was about 7 times higher than those of the uncoated scaffolds. The scaffolds degradation behavior and the drug release profiles were studied in a phosphate buffered saline (PBS) solution. There was a sharp release of the drug in the first few hours (8 h) for both bare and coated scaffolds. For the bare scaffolds the drug was released completely in 24 h. However, the coated scaffolds showed a sustained release in a period of 11 days, suggesting the potential of the present polymer coated BG scaffolds to be used as bone tissue scaffolds with drug carrier and delivery ability.  相似文献   

9.
Gold nanorod (AuNR)‐embedded poly(N‐isopropylacrylamide) (PNIPAM) hydrogels offer the possibility of achieving near‐infrared (NIR) light‐triggered drug release. In addition, using nanoparticles as a crosslinker can enhance the mechanical properties of PNIPAM hydrogels, and nanoparticle‐crosslinked hydrogels provide an important approach for dual drug release. Here, NIR light‐triggered dual drug release using AuNR‐embedded thermosensitive nanogel‐crosslinked hydrogels is reported for the first time. Two kinds of drugs are encapsulated, one in the nanogel and the other in the hydrogel. The volume phase transition of the PNIPAM hydrogels is induced by NIR light by utilizing the photothermal effect of AuNRs. By changing the number of embedded AuNRs and the intensity of NIR light, the release rate and drug quantity can be adjusted for on‐demand release. Because of its NIR light‐triggering and nanoparticle‐crosslinking capabilities, AuNR‐embedded thermosensitive nanogel‐crosslinked hydrogels may expand the application scope of hydrogels and provide enhanced properties in their applications.  相似文献   

10.
《Ceramics International》2017,43(4):3698-3705
Bacterial infections are a major problem in bone tissue regeneration, thus it is essential to incorporate antibacterial properties within the bone scaffolds. Silver compounds are frequently used as antibacterial agents to prevent bacterial infections and numerous studies have shown that silver ions can be incorporated within the biocompatible and osteoconductive biomaterial hydroxyapatite (HAp) structure, but, so far, no study has thoroughly evaluated silver ion release rates in long term. Therefore, we have established a novel carrier system for local drug delivery based on functionalized silver doped hydroxyapatite with determined long term silver ion release rates. Silver ions from prepared scaffolds were released with a rate of 0.001±0.0005 wt%/h taking into account the incorporated silver amount. Moreover, lidocaine hydrochloride was incorporated in the prepared scaffolds, to provide local anesthetic effect. These scaffolds were functionalized with sodium alginate and chitosan and in vitro drug release rate in simulated body fluid was evaluated. The results suggested that the developed novel composite scaffolds possess the antibacterial activity up to one year as well as controlled anesthetic drug delivery up to two weeks.  相似文献   

11.
Novel bone substitutes such as highly porous ceramic scaffolds can serve as platforms for delivering active molecules. A common problem is to control the release of the drug, therefore, it is beneficial to use a drug-functionalized polymer coating. In this study, β-tricalcium phosphate-based porous scaffolds were obtained and coated with diclofenac-functionalized biopolymer – poly(3-hydroxyoctanoate) – P(3HO). To the best of our knowledge, studies using P(3HO) as a component in ceramic-polymer based drug delivery system for bone tissue regeneration have not yet been reported. Presented materials were comprehensively investigated by various techniques such as powder X-ray diffraction, scanning electron microscopy with energy dispersive spectroscopy, hydrostatic weighing and compression tests, pH and ionic conductivity measurements, high-performance liquid chromatography and in vitro cytotoxicity studies. The obtained diclofenac-loaded composite was not only characterised by controlled and sustained drug release, but also possessed improved mechanical properties. Moreover, the precipitation of apatite-like forms on its surface was observed after incubation in simulated body fluid, which indicates its bioactive potential. After 24 hours no cytotoxic effect on MC3T3-E1 mouse preosteoblastic cells was confirmed using indirect cytotoxicity studies. Thus, this promising multifunctional composite scaffold can be a promising candidate as an anti-inflammatory drug-delivery system in bone tissue engineering.  相似文献   

12.
ABSTRACT

A facile method was used for fabricating in-situ-polymerized shape memory polyurethane (PU) hydroxyapatite (HA) nanocomposite scaffolds through electrospinning. The chemical structure and hydrogen bonding index (HBI) content were investigated using Fourier transform infrared spectroscopy. The crystalline morphology was analyzed by X-ray diffraction patterns. Differential scanning calorimetry was conducted to determine the glass transition temperature (Tg ) and degree of crystallinity. The results revealed that HA nanoparticles provide significant reinforcement of PU. Furthermore, incorporation of HA nanoparticles improved the shape memory properties of nanocomposites. The effect of HA nanoparticles on PU/HA electrospun fiber diameter, porosity, mechanical, and shape memory properties were examined.  相似文献   

13.
Freeze casting is one of the emerging and novel manufacturing routes to fabricate porous scaffolds for various applications including orthopedic implants, drug delivery, energy storing devices etc. Thus, it becomes important to understand this process in a deeper sense. Present work was focused to study the effect/influence of basic parameters, particle sizes, and freezing conditions on the mechanical properties and microstructures of porous scaffold fabricated by freeze casting. β-tricalcium phosphate (β-TCP) and hydroxyapatite (HAp) powder with particle sizes of 10?μm and 20?nm were used. Prepared slurries were freeze casted at constant freezing temperature (5?°C) and constant freezing rate (1.86?°C/min) to study the effect of freezing conditions on mechanical and microstructural properties of the porous scaffold. It was observed that porous scaffold fabricated by nanoparticles has given better porosity (63.22–76.16%), than scaffold fabricated by microparticles (13–43.05%) at given solid loading of both freezing conditions. Although, the range of pore size of the scaffold fabricated by nanoparticles (CFR: 2.60–0.84?μm; CFT: 1.66–0.46?μm) was lower than that of scaffold fabricated by microparticles (CFR: 9.45–4.83?μm; CFT: 4.72–2.84?μm). The compressive strength of scaffolds prepared by nanoparticles was in the range of trabecular bone. Moreover, the results of present work will pave the way for the fabrication of porous scaffold with desired pore size and porosity for various implants, energy, and drug delivery applications.  相似文献   

14.
《Ceramics International》2019,45(12):14608-14613
We investigated the bioactivity and cytocompatibility of 45S5 bioactive glass (BG) based scaffolds coated with a composite layer formed by gelatin and manganese doped mesoporous bioactive glass nanoparticles (Mn-MBGNs). The scaffolds were prepared using the foam replica method, and they were further coated with Mn-MBGNs/gelatin via dip coating. The synthesized scaffolds were characterized in relation to morphology, porosity, mechanical stability, bioactivity and cell biology behavior using osteoblast-like (MG-63) cells. The scaffolds were highly porous with interconnected porosity, and a suitable pore structure was maintained even after the Mn-MBGNs/gelatin coating. Energy-dispersive X-ray spectroscopy (EDX) confirmed the presence of Mn-MBGNs in the coatings. Moreover, the presence of gelatin was confirmed by Fourier transform infrared spectroscopy (FTIR). The coated scaffolds exhibited in-vitro bioactivity in simulated body fluid comparable to that of uncoated BG scaffolds. Finally, Mn-MBGNs/gelatin coated scaffolds were shown to be non-cytotoxic to MG-63 cells. Hence, the results presented here confirm that the novel Mn containing scaffolds can be considered in the field of biologically active ion releasing scaffolds for bone tissue engineering applications.  相似文献   

15.
In this work, hollow manganese dioxide/gold nanoparticle (MnO2/GNPs) hybrid drug nanocarriers were prepared by coupling the gold nanoparticles (GNPs) with hollow structure manganese dioxide (MnO2). Among them, GNPs have been used as near-infrared (NIR)-responsive element for photothermal effect under NIR laser irradiation. The glutathione (GSH)-responsive and pH-responsive performances of drug release were derived from hollow MnO2. Particularly, Doxorubicin hydrochloride (DOX) can be loaded into hollow MnO2/GNPs with the drug loading efficiency up to 82.0%. Moreover, the photothermal effect and GSH-/pH-responsive properties of hollow MnO2/GNPs were investigated. The hollow MnO2/GNPs possessed satisfactory drug release efficiency (ca. 87.4% of loaded drug released in 12 h) and have high photothermal conversion efficiency, multiresponsive properties, and degradability. Finally, the kinetics of drug release was discussed in detail. Thus, our finding highlights that the multiresponsive nanocarriers are of great potential in the field of drug controlled release.  相似文献   

16.
李根  李吉东 《化工进展》2021,40(12):6800-6806
兼具良好孔隙率和原位任意塑形固化的可注射复合多孔骨修复材料在临床不规则骨缺损的治疗方面显示出巨大的优势。本研究通过优化双组分设计,以水为发泡剂制备可注射纳米羟基磷灰石/聚氨酯(nHA/PU)复合多孔支架。利用扫描电子显微镜(SEM)、傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)、力学测试及Gillmore针测试等手段对制备的支架进行结构形貌、化学组成、力学性能和固化时间表征。结果表明,本研究制备的可注射nHA/PU复合多孔支架孔隙率高、孔隙贯通性好,孔径分布在100~700μm,适宜细胞和组织向孔内生长;添加20% nHA显著提高了PU支架的力学强度,但降低了支架的孔隙率;可注射支架在8h固化,适宜临床操作。本研究制备的可注射nHA/PU复合多孔支架在不规则骨缺损修复领域具有较大的应用潜力。  相似文献   

17.
骨组织工程用PLGA多孔支架的制备及细胞毒性研究   总被引:6,自引:0,他引:6  
制备能在骨组织工程研究中应用,并具有良好孔隙结构的块状聚(D,L-乳酸-CO-乙醇酸)(PLGA)多孔支架,探索出以冰粒子作为致孔剂,采用粒子滤出方法结合冷冻干燥工艺制备多孔支架的方法.首先将冰颗粒加入预冻的PLGA氯仿溶液中混合均匀,然后把混合物置于液氮中深度冷冻后冷冻干燥,制得多孔支架.对支架孔隙结构分析表明,该工艺制备的多孔支架无致孔剂残留、三维结构良好、孔径与孔隙可通过改变冰粒子的粒径和质量分数来控制;细胞毒性实验表明该多孔支架毒性在0~1级,可作为骨组织工程研究用多孔支架.  相似文献   

18.
Porous 45S5 Bioglass®-based glass–ceramic scaffolds with high porosity (96%) and interconnected pore structure (average pore size 300 μm) were prepared by foam replication method. In order to improve the mechanical properties and to incorporate a drug release function, the scaffolds were coated with a drug loaded solution, consisting of PHBV and vancomycin. The mechanical properties of the scaffolds were significantly improved by the PHBV coating. The bioactivity of scaffolds upon immersion in SBF was maintained in PHBV coated scaffolds although the formation of hydroxyapatite was slightly retarded by the presence of the coating. The encapsulated drug in coated scaffolds was released in a sustained manner (99.9% in 6 days) as compared to the rapid release (99.5% in 3 days) of drug directly adsorbed on the uncoated scaffolds. The obtained drug loaded and bioactive composite scaffolds represent promising candidates for bone tissue engineering applications.  相似文献   

19.
Additive manufacture has recently been proposed as a versatile process for fabricating porous bioceramic scaffolds for bone repair and tissue engineering; however, to control or tailor the biodegradation of the porous biomaterials is still a challenge. Here, the core-shell-structured biphasic bioceramic porous scaffolds with tailorable ion release and biodegradation were prepared by direct ink writing technique with coaxially aligned bi-nozzle system. Our method employed rapidly gelling filaments of wollastonite (CSi) and diopside without and with Zn or Sr doping (Dio, ZnDio, SrDio) derived from bi-flow of sodium alginate-loaded bioceramic slurries, and varying the powder slurry design made it easy to create core-shell struts (e.g. CSi@Dio, CSi@ZnDio, CSi@SrDio) with adjustable bioceramic-phase distribution. It was found that the Zn- or Sr-doping could readily adjust the mechanical strength and biodegradation rate in the early stage. Furthermore, when 30% organic microspheres were pre-mixed into the powder slurry, the controllable high-density micropores could be introduced into the shell layer after sintering (e.g. CSi@Dio-p, CSi@ZnDio-p, CSi@SrDio-p), and thus permeability is maximally tuned and favorable for ion release through the porous shell layer. This new core-shell direct ink writing strategy can be used to fabricate a variety of biphasic bioceramic scaffolds with adjustable physicochemical properties which could be potentially beneficial for improving biological performance and bone repair in situ.  相似文献   

20.
《Ceramics International》2016,42(14):15311-15318
Facile wet-chemical methods are applied to synthesize hydroxyapatite and β-tricalcium phosphate nanoparticles, respectively. Porous biphasic calcium phosphate (BCP) bioceramic scaffolds are then fabricated using as-prepared HA and β-tricalcium phosphate nanoparticle powders. The macro pore diameter of BCP bioceramic scaffolds can be controlled by adjusting the amount of surfactants. The average diameter of the macro pores in BCP bioceramic scaffolds increases from 100 to 600 µm with the decrease amount of sodium dodecyl sulfate from 0.8 to 0.5 g, respectively. The BCP bioceramic scaffolds gradually degrade and the calcium-phosphate compounds fully deposit when soaking in simulated body fluid solution. Moreover, The BCP bioceramic scaffolds have outstanding biocompatibility to promote the cellular growth and proliferation of human dental pulp stem cells (hDPSCs). The hDPSCs also demonstrate favorable cellular adhering capacity on the pore surface of scaffolds, especially on the scaffolds with 100–200 µm pore diameter. The porous BCP bioceramic scaffold with inter-connected pore structure, outstanding in vitro cellular biocompatibility, favorable cell viability and adhesion ability will be a promising biomaterial for bone or dentin tissue regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号