首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Copolymers of ε-caprolactone and L-lactide (ε-CL/L-LA) and ε-caprolactone and DL-lactide (ε-CL/DL-LA) were synthesized with compositions 80/20, 60/40, and 40/60 (wt % in feed). The polymerization temperature was 140°C and Sn(II)octoate was used as a catalyst. The effect of the comonomer ratio on the thermal and mechanical properties of the copolymers was investigated by size-exclusion chromatography (SEC), differential scanning calorimetry (DSC), nuclear magnetic resonance (NMR) spectrometry, and tensile testing. The copolymers differed widely in their physical characteristics, ranging from weak elastomers to tougher thermoplastics according to the ratio of ε-CL and LA in the copolymerization. Poly(L-lactide) (PLLA), poly(DL-lactide) (PDLLA), and poly(ε-caprolactone) (PCL) homopolymers were studied as references. The tensile modulus and tensile strength were much higher for PLLA, PDLLA, and PCL homopolymers than for the copolymers. The maximum strain was very low for PLLA and PDLLA, whereas the copolymers and PCL exhibited large elongation. © 1996 John Wiley & Sons, Inc.  相似文献   

2.
T.S. Omonov  C. Harrats  G. Groeninckx 《Polymer》2005,46(26):841-12336
Phase morphology development in ternary uncompatibilized and reactively compatibilized blends based on polyamide 6 (PA6), polypropylene (PP) and polystyrene (PS) has been investigated. Reactive compatibilization of the blends has been performed using two reactive precursors; maleic anhydride grafted polypropylene (PP-g-MA) and styrene maleic anhydride copolymer (SMA) for PA6/PP and PA6/PS pairs, respectively. For comparison purposes, uncompatibilized and reactively compatibilized PA6/PP and PA6/PS binary blends, were first investigated. All the blends were melt-blended using a co-rotating twin-screw extruder. The phase morphology investigated using scanning electron microscope (SEM) and selective solvent extraction tests revealed that PA6/PP/PS blends having a weight percent composition of 70/15/15 is constituted from polyamide 6 matrix in which are dispersed composite droplets of PP core encapsulated by PS phase. Whereas, a co-continuous three-phase morphology was formed in the blends having a composition of 40/30/30. This morphology has been significantly affected by the reactive compatibilization. In the compatibilized PA6/(PP/PP–MA)/(PS/SMA) blends, PA6 phase was no more continuous but gets finely dispersed in the PS continuous phase. The DSC measurements confirmed the dispersed character of the PA6 phase. Indeed, in the compatibilized PA6/(PP/PP–MA)/(PS/SMA) blends where the PA6 particle size was smaller than 1 μm, the bulk crystallization temperature of PA6 (188 °C) was completely suppressed and a new crystallization peak emerges at a lower temperature of 93 °C as a result of homogeneous nucleation of PA6.  相似文献   

3.
Dong Wang  Bao-Hua Guo 《Polymer》2011,52(1):191-200
We report a novel and effective strategy that compatibilizes three immiscible polymers, polyolefins, styrene polymers, and engineering plastics, achieved by using a polyolefin-based multi-phase compatibilizer. Compatibilizing effect and morphology development are investigated in a model ternary immiscible polymer blends consisting of polypropylene (PP)/polystyrene(PS)/polyamide(PA6) and a multi-phase compatibilizer (PP-g-(MAH-co-St) as prepared by maleic anhydride (MAH) and styrene (St) dual monomers melt grafting PP. Scanning electron microscopy (SEM) results indicate that, as a multi-phase compatibilizer, PP-g-(MAH-co-St) shows effective compatibilization in the PP/PS/PA6 blends. The particle size of both PS and PA6 is greatly decreased due to the addition of multi-phase compatibilizer, while the interfacial adhesion in immiscible pairs is increased. This good compatibilizing effect is promising for developing a new, technologically attractive method for achieving compatibilization of immiscible multi-component polymer blends as well as for recycling and reusing of such blends. For phase morphology development, the morphology of PP/PS/PA6 (70/15/15) uncompatibilized blend reveals that the blend is constituted from PP matrix in which are dispersed composite droplets of PA6 core encapsulated by PS phase. Whereas, the compatibilized blend shows the three components strongly interact with each other, i.e. multi-phase compatibilizer has good compatibilization between the various immiscible pairs. For the 40/30/30 blend, the morphology changed from a three-phase co-continuous morphology (uncompatibilized) to the dispersed droplets of PA6 and PS in the PP matrix (compatibilized).  相似文献   

4.
The dependence of the morphology development of physical as well as of reactive compatibilized polypropylene/polyamide 6 (PP/PA6) blends in a mixing zone of a co‐rotating twin screw extruder on blend composition and screw rotational speed was investigated. A special process analytical set‐up based on a co‐rotating twin screw extruder was used, which allowed melt sampling from different positions along the operating extruder in time periods less than 10 seconds. It has been shown that the disperse particle sizes in physical blends depend crucially on the blend composition because of the increasing influence of coalescence with an increasing concentration of the disperse phase. Furthermore, the morphology of physical PP/PA6 blends depends strongly on their rheological properties. In contrast, the influence of the screw rotational speed on the morphology is minor. The resulting particle size in a mixing zone is achieved already after a short screw length. The particle size of compatibilized blends is significantly smaller than in physical blends because of the better conditions for drop break‐up and the suppression of coalescence effects. Due to this, compatibilization has a stronger influence on the blend morphology than a variation of process or rheological conditions with physical blends. Furthermore, the compatibilization leads to a concurrent crystallization of the PA6 phase with the PP phase.  相似文献   

5.
It is still a critical challenge to prepare engineering plastics with multi-functionalities and high-performances while considering their aesthetic properties and dyeing processes. In this study, a light-colored conductive nanorod (CNR) was employed to mediate the morphology of immiscible polypropylene/poly(butylene succinate) (PP/PBS) blends. The CNR could be only located in polar PBS phase to effectively control the viscoelasticity ratio between binary phases. By incorporating just 9 per hundred resins (phr) of CNR, the sea-island structure of PP/PBS (70/30) would transform a stable co-continuous morphology of PP/PBS/CNR (70/30/9). The addition of CNR led to a significant reduction in blends' surface resistivity and volume resistivity. Simultaneously, the mechanical properties and appearance colors of the ternary blends were improved. The effect of CNR in morphological mediation was further verified with PP/poly(butylene adipate terephthalate)/CNR (PP/PBAT/CNR) and PP/poly(ε-caprolactone)/CNR (PP/PCL/CNR) blends. In summary, this work provided a desirable engineering plastic, demonstrating permanent antistatic performance, improved mechanical properties and good colorability.  相似文献   

6.
This article comprises of the interaction in the immiscible polymer system of nylon 11 (PA 11), polypropylene (PP), and polyhydroxybutyrate (PHB). Reactive compatibilization extrusion method with maleic anhydride-grafted polypropylene (PP-g-MA) is used to achieve compatibility within the polymer. To further improve the interaction of the blend at interphase, PHB was added as a dispersive phase in a concentration varying from 10 to 40% of the total batch. Addition of PHB motives the excellent dispersion of PP chain in PA 11 and assures the compatibility between the phases of PA 11 and PP-g-MA. The entire system of tertiary and binary phases was blended in a twin-screw extruder at different composition. The macro-optimal tensile strength, Young's modulus, bending strength, and notched impact strength of PA11/PP systems were found to be superior as compared to their noncompatibilized systems. The degradation temperature of the blends of PA11/PP and PA11/PHB/PP with and without compatibilizer was evaluated by thermogravimetric analysis (TGA). It was found that the high temperature of degradation was required for compatibilized ternary blend than that of the compatibilized binary blend. The distortion temperature of the systems was studied with the help of heat deflection temperature (HDT) and found to be advanced for blend having a higher concentration of the dispersed phase. Differential scanning calorimetry (DSC) was used to determine the % crystallinity, melting, and crystallization temperature of this system. Chemical resistance and barrier properties of the different compatibilized and noncompatibilized blends were studied. PHB dispersed phase with a reactive compatibilizer cause enhancement in chemical resistance and barrier properties of the blend. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48152.  相似文献   

7.
Both uncompatibilized and compatibilized blends based on polyamide 12 (PA12) and isotactic polypropylene (PP) were prepared in a Brabender Plastograph®. The compatibiliser used was maleic anhydride functionalized polypropylene (PP‐g‐MA). Phase morphology of the blends was inspected in scanning electron microscope (SEM) on cryogenically fractured etched surfaces of the specimens. PA12/PP blends possessed a nonuniform and unstable morphology owing to the incompatibility between their constituents. Addition of compatibiliser improved the interfacial characteristics of the blends by retarding the rate of coalescence. So, the phase morphology became more fine, uniform, and stable. Tensile properties of both uncompatibilized and compatibilized blends were measured as a function of blend composition and compatibiliser concentration. Uncompatibilized blends displayed inferior mechanical properties to compatibilized ones; especially for those containing 40–60 wt % of PP. Reactive compatibilisation of blends was found to be efficient and improved the tensile strength of the blends considerably. Addition of PP‐g‐MA improved the interfacial adhesion, decreased the interfacial tension, and thereby, enhanced the tensile strength by 85%. Finally, various models were adopted to describe the tensile strength of the blends. The experimental data exhibited a reasonably good fit with Nielsen's first power law model. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

8.
通过熔融接枝反应制备了甲基丙烯酸缩水甘油酯接枝聚丙烯(PP-g-GMA),并将其作为聚丙烯/聚酰胺6(PP/PA6)共混物的相容剂,研究了PP-g-GMA对PP/PA6共混物的力学性能及形态结构的影响。结果表明,采用滴定法测得PP-g-GMA接枝率为3.35 %;当PP-g-GMA的添加量为4 %(质量分数,下同)和8 %时,PP/PA6/PP-g-GMA共混物的拉伸强度和缺口冲击强度分别较PP/PA6共混物提高了32.4 %和60.4 %;PP-g-GMA显著改善了PP/PA6 共混物的界面相容性,是PP/PA6共混物的有效增容剂。  相似文献   

9.
Specially designed block copolymers have played a role as compatibilizing agents in the system of immiscible polymer blends. We applied lauryl lactam (LA)–caprolactone (CL) block copolymer [P(LA‐b‐CL)] as a compatibilizing agent for immiscible poly(vinyl chloride) (PVC) blends with various polymers. These blends possess high thermal performance and toughness. We investigated the effect of P(LA‐b‐CL) as a compatibilizing agent for immiscible PVC blends with poly(ω‐lauryl lactam) [polyamide 12 (PA12)]. We also described the invention of a new compatibilizing agent system involving P(LA‐b‐CL) for PVC/polypropylene (PP) blends. The mechanical and thermal properties of (1) PVC/PA12 blend compatibilized with P(LA‐b‐CL) and (2) PVC/PP blend compatibilized with P(LA‐b‐CL)/PA12/maleic anhydride–modified PP were both enhanced. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1983‐1992, 2004  相似文献   

10.
Polyamide 6/polypropylene (PA6/PP=70/30 parts) blends containing 4 phr (parts per hundred resin) of organophilic modified montmorillonite (organoclay) were prepared using twin screw extruder followed by injection molding. Maleated polypropylene (MAH-g-PP) was used to compatibilize the blend system. The mechanical properties of PA6/PP nanocomposites were studied through tensile and flexural tests. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to assess the fracture surface morphology and the dispersion of the organoclay, respectively. X-ray diffraction (XRD) was used to characterize the formation of nanocomposites. The thermal properties were characterized by using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The dynamic mechanical properties of PA6/PP nanocomposites were analyzed by using dynamic mechanical thermal analyzer (DMTA). The strength and stiffness of PA6/PP nanocomposites were improved significantly in the presence of MAH-g-PP. This has been attributed to the synergistic effect of organoclay and MAH-g-PP. The MAH-g-PP compatibilized PA6/PP nanocomposites showed a homogeneous morphology supporting the compatibility improvement between PA6, PP and organoclay. TEM and XRD results revealed the formation of nanocomposites as the organoclay was intercalated and exfoliated. A possible chemical interaction between PA6, PP, organophilic modified montmorillonite and MAH-g-PP was proposed based on the experimental work.  相似文献   

11.
In a blend of two immiscible polymers a controlled morphology can be obtained by adding a block or graft copolymer as compatibilizer. In the present work blends of low‐density polyethylene (PE) and polyamide‐6 (PA‐6) were prepared by melt mixing the polymers in a co‐rotating, intermeshing twin‐screw extruder. Poly(ethylene‐graft‐polyethylene oxide) (PE‐PEO), synthesized from poly(ethylene‐co‐acrylic acid) (PEAA) (backbone) and poly(ethylene oxide) monomethyl ether (MPEO) (grafts), was added as compatibilizer. As a comparison, the unmodified backbone polymer, PEAA, was used. The morphology of the blends was studied by scanning electron microscopy (SEM). Melting and crystallization behavior of the blends was investigated by differential scanning calorimetry (DSC) and mechanical properties by tensile testing. The compatibilizing mechanisms were different for the two copolymers, and generated two different blend morphologies. Addition of PE‐PEO gave a material with small, well‐dispersed PA‐spheres having good adhesion to the PE matrix, whereas PEAA generated a morphology characterized by small PA‐spheres agglomerated to larger structures. Both compatibilized PE/PA blends had much improved mechanical properties compared with the uncompatibilized blend, with elongation at break b) increasing up to 200%. Addition of compatibilizer to the PE/PA blends stabilized the morphology towards coalescence and significantly reduced the size of the dispersed phase domains, from an average diameter of 20 μm in the unmodified PE/PA blend to approximately 1 μm in the compatibilized blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2416–2424, 2000  相似文献   

12.
Polycarbonates (PCs) have been extensively blended with polyolefins such as polypropylene (PP) due to pecuniary advantages. Although the toughness of a pristine PC matrix has been examined, limited works have investigated the toughness of heterogeneous PC/PP blend systems, focusing merely on PC-dispersed PP matrices. In this study, the mechanical/thermal properties of PP-dispersed PC matrix (PC-rich phase) were examined by using potential compatibilizers: poly(maleic anhydride-alt-α-olefin) (OM), ethylene-co-acrylic acid (EA), and cyclic olefin copolymer. The incorporation of 0.5–5.0 phr of compatibilizers (OM and EA) into PC substantially enhanced the toughness of PC/PP15 blends according to four different testing methods. The highest toughness was obtained with 0.5 phr of OM and EA. The compatibilized blends displayed enhanced various thermal properties such as glass transition temperatures, heat deflection temperature, and degradation point, due to the compatibilizing effect. Moreover, 0.5 phr of compatibilizers (OM and EA) were determined as the most effective concentration in terms of toughness and most properties, without compromising strengths and moduli. The morphology of PP-dispersed PC matrix (crystalline polymer-infiltrated amorphous polymer matrix) differed from that of PC-dispersed PP matrix. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47684.  相似文献   

13.
The compatibilization of polypropylene (PP)/nylon 6 (PA6) blends with a new PP solid‐phase graft copolymer (gPP) was systematically studied. gPP improved the compatibility of PP/PA6 blends efficiently. Because of the reaction between the reactive groups of gPP and the NH2 end groups of PA6, a PP‐g‐PA6 copolymer was formed as a compatibilizer in the vicinity of the interfaces during the melting extrusion of gPP and PA6. The tensile strength and impact strength of the compatibilized PP/PA6 blends obviously increased in comparison with those of the PP/PA6 mechanical blends, and the amount of gPP and the content of the third monomer during the preparation of gPP affected the mechanical properties of the compatibilized blends. Scanning electron microscopy and transmission electron microscopy indicated that the particle sizes of the dispersed phases of the compatibilized PP/PA6 blends became smaller and that the interfaces became more indistinct in comparison with the mechanical blends. The microcrystal size of PA6 and the crystallinity of the two components of the PP/PA6 blends decreased after compatibilization with gPP. The compatibilized PP/PA6 blends possessed higher pseudoplasticity, melt viscosity, and flow activation energy. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 420–427, 2004  相似文献   

14.
A quantitative analysis method for the distribution of noncrystalline poly(butadiene) component in poly(ε-caprolactone)/poly(butadiene) (PCL/PB) binary blends have been analyzed by advance application of Raman spectroscopy, optical microscopy, and differential scanning calorimetry (DSC) techniques. Thin films of different compositions of PCL/PB binary blends were prepared from solution and isothermally crystallized at a certain temperature. After calibration with real data, quantitative analyses by Raman spectroscopy revealed the amorphous PB are trapped inside the PCL crystals. Polarized optical microscopy and real time atomic force microscopy were used to collect data for the crystal morphology and crystal growth rate. For pure PCL crystals, a morphology of truncated lozenge shape was observed, independent of crystallization temperature and regardless of the blends compositions. For the pure PCL and their blends, almost unique crystal growth rate was found. The miscibility behaviors using DSC were drawn through melting point depression method. The Hoffman-Weeks extrapolations of the blends were found to be linear and identical with those of the neat PCL. The interaction parameter for the blends indicating that the PCL and PB blends have no intermolecular interaction, confirming the blends are immiscible. Despite the immiscibility of the blend, the PCL crystals do not bend during the growth process and do not reduce the growth rate as they do for miscible blend systems.  相似文献   

15.
The high interfacial tension between two immiscible phases in a polymer blend often prevents a homogenous stress distribution. Therefore, blends of Nylon 6 (Ny6) and polypropylene (PP) were compatibilized using two commercially available types of PP grafted with maleic anhydride (MAPP) with a low (~2 %) and a high (~7%) grade of maleation. The interfacial tension of compatibilized and non‐compatibilized blends of PA6/PP was calculated from the recoded data of oscillatory rheological measurements using an emulsion model. Both compatibilizers showed similar improvements in tensile strength of up to 25%, but the one low maleation grade compatibilizer showed improved impact properties (>200%). It could be shown that, despite, being more effective in reducing the interfacial tension, using a high grade of maleation in the compatibilizer causes no additional improvement in tensile strength over a low grade of maleation and even has a negative effect on the PA6/PP blend impact strength. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40792.  相似文献   

16.
This paper concerns the morphology development of in situ compatibilized semicrystalline polymer blends in a co-rotating, intermeshing twin-screw extruder, using polypropylene (PP) and polyamide 6 (PA-6) blends as model systems. The morphology of in situ compatibilized blends develops much faster that of mechanical ones. The size of the dispersed phase (PA-6) undergoes a 104 fold reduction from a few millimeters to sub-micron during its phase transition from solid pellets to a viscoelastic fluid. The final morphology is reached as soon as the phase transition is completed, which usually requires only a small fraction of the screw length in a co-rotating twin screw extruder. Screw profiles and processing conditions (screw speed, throughput and barrel temperature) control the PA-6's melting location and/or rate, but do not have significant impact on the ultimate morphology and mechanical properties of in situ compatibilized blends. The finding that morphology of PP/PA-6 reactive blend develops rapidly makes it possible to produce compatibilized PP/PA-6 blends by the so-called one-step reactive extrusion. It integrates the traditionally separated free radical grafting of maleic anhydride onto PP and the compatibilization of PP/PA-6 into a single extrusion step.  相似文献   

17.
The reactivity of maleic anhydride and acrylic acid polypropylene graft copolymers with amine groups and their effect in the compatibilization of polymer blends was analyzed in real time during the reactive processing of compatilized polypropylene/polyamide 6 (PP/PA6) blends. The presence of compatibilizers in the blend produces a block copolymer PP‐PA6, which stays in the blends interface, lowering the interfacial tension and reducing the PA6 particle size, affecting the light extinction phenomena. The in‐line optical detector is able to indirectly quantify the conversion of the compatibilization reaction of the blends. The signal intensity of the detector increases with the increase of the PA6 content due to the increase in the number of particles. Quantitative off‐line FTIR analyses of the compatibilized blends have shown that the amount of block copolymer formed when polypropylene grafted with acrylic acid (PP‐g‐AA) is used as compatibilizer increases with its content in the blend. There is a good correlation between the in‐line optical measurement and the off‐line amidic bond content formed. Non‐reacted compatibilizers are always present in the reactive blends whose content is proportional to its initial concentration. The PA6 particle size data obtained from scanning electron microscopy analysis showed good correlation with the in‐line measurements. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers  相似文献   

18.
PA6/PP/SEBS-g-MAH共混物的相容性研究   总被引:2,自引:1,他引:2  
采用马来酸酐接枝(氢化苯乙烯/丁二烯/苯乙烯)共聚物(SEBS-g-MAH)作为增容剂,研究了增容剂用量对尼龙6/聚丙烯(PA6/PP)共混体系相态结构、力学性能的影响,以及在相同增容剂用量下不同PA6、PP配比对体系相形态的影响。结果表明,SEBS-g-MAH中的酸酐基团能与PA6末端的氨基发生化学反应,在PA6和PP的内表面形成PA6-SEBS接枝共聚物,明显改善了两相的界面相容性,并使共混物的力学性能得到显著提高。共混物冲击断面形貌的分析表明,共混物发生了明显的脆韧转变。  相似文献   

19.
采用两种不同分子量的聚(ε-己内酯)(PCL)(粘均分子量60 000和3 000)与聚乳酸(PLA)在175℃下共混10 min制备PLA/PCL共混物。通过动态流变、扫描电子显微镜(SEM)和力学性能等研究了PLA/PCL共混物的结构和性能。动态流变显示,在PCL低含量(质量分数小于15%)时,PCL与PLA是相容的,质量分数为15%时PCL与PLA表现出明显的相分离行为。SEM显示,随着PCL含量的增加,PCL相的尺寸变大;低分子量PCL(L-PCL)的相尺寸明显大于高分子量PCL(H-PCL),而且相形态不是规则的球状。随着PCL含量的增加,共混物的拉伸强度下降,而断裂伸长率增加。当H-PCL质量分数为8.3%时,PLA/H-PCL共混物的断裂伸长率为137.32%。当H-PCL质量分数为15%时,其断裂伸长率高达232.76%。在添加相同含量PCL时,PLA/H-PCL共混物的拉伸强度高于PLA/L-PCL;而PCL质量分数8%时,共混物的断裂伸长率相差不多,当PCL质量分数大于8%时,PLA/H-PCL共混物的断裂伸长率明显比PLA/L-PCL共混物的高。  相似文献   

20.
A new family of bioabsorbable materials suitable for biomedical applications was designed and prepared by means of blending of some available polyesters to develop new biodegradable materials tailored for different requirements. Multiphase polymer blends containing poly(d, l-lactide) (PLA), poly(ε-caprolactone) (PCL), poly(d, l)-lactide-co-poly(ethylene glycol) (PELA), poly(ε-caprolactone) -co-poly(ethylene glycol) (PECL), and poly(ß-hydroxybutyrate) (PHB), PLA/PCL, PELA/PECL, PHB/PLA, PHB/PELA, PHB/PCL, and PHB/PECL blends were respectively investigated. It was found that PLA/PCL, PHB, and PHB/PLA and PHB/PCL blends were seemingly immiscible, with their morphology and hydrolytic behavior were determined by the composition of the blends. On the other hand, the miscibility of PELA/PECL, PHB/PELA, and PHB/PECL blends was improved by using PELA and/or PECL block copolymers that contained poly(ethylene glycol) (PEG) as compatibilizer. The blends showed to a certain extent miscibility, fine phase morphology, and fast hydrolysis. © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号