首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, effect of processing method on microstructure formation and related electrical conductivity and electromagnetic interference shielding effectiveness of carbon nanofiber (CNF) filled thermoplastic polyurethane (TPU) composites, prepared via three different processing techniques; (i) melt compounding (MC) in a twin screw extruder, (ii) simple solution mixing (SM) on a magnetic stirrer, and (iii) solution mixing with sonication (SM-U) were investigated. It was found that the electrical conductivity values of samples decreased in the order of SM > SM-U > MC for a particular amount of CNF. The electromagnetic test results showed that the samples prepared with SM and SM-U methods yielded higher total shielding effectiveness (SET) values than those prepared with MC. SET values of samples including of 20 phr of CNF prepared with MC, SM-U and SM methods were varied in the range of 10–30 dB, 20–60 dB and 20–80 dB, respectively within a frequency range of 1–12 GHz.  相似文献   

2.
《Ceramics International》2019,45(15):18988-18993
Aiming to prepare high-performance electromagnetic interference (EMI) shielding materials, chopped carbon fibers were incorporated into mullite ceramic matrix via rapid prototyping process of spark plasma sintering (SPS). Results indicate that Cf/mullite composites with only 1 wt% of carbon fibers exhibit highest shielding effectiveness (SET) over 40 dB at a small thickness of 2.0 mm, showing great advantages both in terms of performance and thickness compared with many mature carbon/ceramic composites. The high EMI shielding properties mainly depend on two mechanisms of absorption and reflection in this present work. The enhanced absorption and reflection of electromagnetic wave are ascribed to the promotional electrical conductivity arising from the formation of conductive network by introduction of carbon fibers. Regarding enhanced electrical conductivity, notable intensified interfacial polarization on a large number of interfaces between mullite matrix and carbon fibers is also the key factor to the improved absorption, which makes absorption play a dominant role in the significant improvement of EMI SET. The Cf/mullite composites with excellent EMI shielding properties and thin thickness show great potential application as EMI materials.  相似文献   

3.
《Ceramics International》2019,45(14):17144-17151
Carbon nanotubes (CNTs) decorated with ferromagnetic materials have promising potential in electromagnetic interference (EMI) shielding applications. In this work, CNT sponges with increasing density were fabricated by filling them with magnetic Fe nanowires of mutative filling ratios via chemical vapor deposition (CVD). Results indicated that Fe@CNT composites with the highest density endowed the most remarkable average SET value of 70.01 dB (more than 99.99999% absorption), showing an ultra-high EMI shielding performance. However, the susceptibility to oxidation of carbon materials has restricted its further development in high-temperature EMI shielding applications. Therefore, the Fe@CNT composites were encapsulated by silicon carbide (SiC) with satisfactory oxidation resistance. Thereafter, the average SET value of SiC encapsulated a higher density Fe@CNT sponge decreased to an adequate value of 36.48 dB due to the huge loss of electrical conductivity. However, the SET value of it only dropped by about 1.20 as the temperature went up from 25 to 600 °C, demonstrating an excellent stability under high temperature conditions. As a proof of concept, the Fe@CNT/SiC composites with adequate EMI shielding performance and satisfactory oxidation resistance suggest its prospect in high temperature resistant EMI shielding.  相似文献   

4.
Effective electromagnetic interference (EMI) shielding requires materials with high permittivity. The current study reports 3D printed polymer-derived SiOC ceramics (PDC) modified with SiC nanowires (SiCnw) exhibiting both high real and imaginary parts of permittivity within X-band. SEM results indicated that a large number of pores and cracks exist in the SiOC, and twinned SiCnw were uniformly grown among them along with the existence of graphite microcrystals when the sintering temperature was 1500 ℃. The real part of permittivity ranged from 16.6 to 28.9 while the imaginary part from 31.7 to 34.2 in X-band. The EMI total shielding effectiveness (SET) of the ceramics could reach 34.7 dB with absorption loss (SEA) of 29.3 dB and reflection loss (SER) of 5.4 dB. Meanwhile, the 3D printed PDC-SiOC ceramics at 900 ℃ sintering temperature possess certain mechanical properties with the magnitude of compressive strength being 12.57 MPa.  相似文献   

5.
《Ceramics International》2019,45(10):12672-12676
Macroscopic parallel aligned non-woven carbon fibers were incorporated into Al2O3 composites in this study to evaluate the contribution of multiple reflections to the total electric magnetic interference (EMI) shielding. Results indicate that parallel aligned non-woven carbon fiber layers contribute significantly to the total EMI shielding effectiveness (SET) of Al2O3 composites by largely enhancing the EMI absorption, and seven parallel aligned thin non-woven carbon fiber layers finally make the almost microwave-transparent Al2O3 an excellent EMI shielding material with an EMI SET as high as 29–32 dB in the X-band frequency range. The volume fraction of carbon fibers in Al2O3 composites with seven carbon fiber layers is calculated to be only 0.5%, and therefore the EMI SE enhancement efficiency by parallel aligned large non-woven carbon fiber layers is much higher than other highly conducting nano fillers. It validates the significance of multiple reflections in achieving high EMI shielding properties in ceramic composites and provides an instructive approach to design efficient EMI shielding ceramic composites.  相似文献   

6.
Electromagnetic interference shielding effectiveness (EMI SE) of multifunctional Fe3O4/carbon nanofiber composites in the X-band region (8.2–12.4 GHz) is studied. Here, we examine the contributing effects of various parameters such as Fe3O4 content, carbonization temperature and thickness on total shielding efficiency (SEtotal) of different samples. The maximum EMI SE of 67.9 dB is obtained for composite of 5 wt.% Fe3O4 (0.7 mm thick) with the dominant shielding by absorption (SEA) of electromagnetic radiation. The enhanced electromagnetic shielding performance of Fe3O4/carbon nanofiber composites is attributed to the increment of both magnetic and dielectric losses due to the incorporation of magnetite nanofiller (Fe3O4) in electrically conducting carbon nanofiber matrix as well as the specific nanofibrous structure of carbon nanofiber mats, which forms a higher aspect ratio structure with randomly aligned nanofibers. Furthermore, we prove that the addition of elastomeric polydimethylsiloxane (PDMS) as a coating for carbon nanofiber composite strengthens the composite structure without interfering with its electromagnetic shielding efficiency.  相似文献   

7.
In this work, a robust and flexible bilayered MXene/cellulose paper sheet with superhigh electrical conductivity was prepared via vacuum-assisted filtration and a subsequent hot-pressing process for electromagnetic interference (EMI) shielding applications. By tightly assembling few-layered MXene (f-Ti3C2Tx) on the cellulose substrate via hydrogen bonds, an effective and interconnected conductive network was constructed in the paper sheet, resulting in a high electrical conductivity of 774.6–5935.4 S m?1 at various f-Ti3C2Tx loadings. The highly conductive MXene layer can promptly reflect a great amount of incident EM waves, a process which preceded the transmission of EM waves in the cellulose matrix. Owing to the highly efficient reflection-dominated EMI shielding mechanism, the resultant bilayered MXene/cellulose paper sheets exhibit excellent EMI shielding effectiveness of 34.9–60.1 dB and specific EMI shielding efficiency of 290.6–600.7 dB mm?1. Moreover, the MXene/cellulose paper sheets demonstrated improved mechanical strength (up to 25.7 MPa) and flexibility due to the mechanical frame effect acted by the cellulose substrate. Consequently, the robust and flexible bilayered MXene/cellulose paper sheet is a promising candidate for application in next-generation electric devices.  相似文献   

8.
Unidirectional (UD) silicon carbide (SiC) fiber-reinforced SiC matrix (UD SiCf/SiC) composites with CVI BN interphase were fabricated by polymer infiltration-pyrolysis (PIP) process. The effects of the anisotropic distribution of SiC fibers on the mechanical properties, thermophysical properties and electromagnetic properties of UD SiCf/SiC composites in different directions were studied. In the direction parallel to the axial direction of SiC fibers, SiC fibers bear the load and BN interphase ensures the interface debonding, so the flexural strength and the fracture toughness of the UD SiCf/SiC composites are 813.0 ± 32.4 MPa and 26.1 ± 2.9 MPa·m1/2, respectively. In the direction perpendicular to the axial direction of SiC fibers, SiC fibers cannot bear the load and the low interfacial bonding strengths between SiC fiber/BN interphase (F/I) and BN interphase/SiC matrix (I/M) both decrease the matrix cracking stress, so the corresponding values are 36.6 ± 6.9 MPa and 0.9 ± 0.5 MPa?m1/2, respectively. The thermal expansion behaviors of UD SiCf/SiC composites are similar to those of SiC fibers in the direction parallel to the axial direction of SiC fibers, and are similiar to those of SiC matrix in the direction perpendicular to the axial direction of SiC fibers. The total electromagnetic shielding effectiveness (EM SET) of UD SiCf/SiC composites attains 32 dB and 29 dB when the axial direction of SiC fibers is perpendicular and parallel to the electric field direction, respectively. The difference of conductivity in different directions is the main reason causing the different SET. And the dominant electromagnetic interference (EMI) shielding mechanism is absorption for both studied directions.  相似文献   

9.
The present research focuses on the preparation of an efficient material that acts as a deterrent to electromagnetic pollution. In this study, graphite and carbon fiber (CF) reinforced polypropylene (PP) composites (GCF) are prepared using a melt processing technique via a twin-screw extruder. The prepared composites were evaluated for mechanical, thermal, DC conductivity, and EMI shielding properties. There is a rise in the tensile strength (4.32%) and thermal stability (6.57%) of composites were recorded as compared to pure PP. The fractured morphology of the composites showed the breakdown of CF, leading to the improvement in the tensile strength of the composites. An increase in electrical conductivity was seen at maximum (GCF4) filler loading indicating 2.31 × 10?4 S/cm which is much better than the pure PP value (2.07 × 10?10 S/cm). The maximum value of shielding effectiveness is achieved at the maximum weight percentage of filler loading which is ?44.43 dB with a thickness of 2 mm covering the X-band (8.2–12.4 GHz).  相似文献   

10.
《Ceramics International》2022,48(8):11031-11042
Polyaniline (PANI) and its composite with sulphur doped reduced graphene oxide (S-RGO) have been successively synthesized via in-situ chemical oxidative polymerization of aniline in presence of 10 wt. % S-RGO nanosheets. Physico-chemical analyses of the synthesized nanomaterial was performed with various characterization techniques such as X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS), Atomic Force Microscopy (AFM) and Thermogravimetric analysis/Differential Scanning Calorimetry (TGA/DSC). The results interpreted from the various characterizations confirm the doping of RGO with sulphur as well as strong interaction of PANI nanofibers and S-RGO nanosheets. TG/DSC curves confirm the enhanced thermal stability of polyaniline/sulphur doped reduced graphene oxide (PANI/S-RGO) nanocomposites with heat resistance index (THRI) of 155.2 °C in comparision to pure PANI (THRI = 145.3 °C) at a filler loading of 10 wt. %. TGA validates that thermal stability of PANI/S-RGO nanocomposite improves by 6–7 °C than pure PANI in terms of weight loss percentage at a temperature of 1117 °C. However DSC analysis confirms that PANI/S-RGO retains its structural integrity and conformity to temperatures as high as 900 °C beyond which the polymer composite starts to degrade. The electromagnetic interference shielding effectiveness (EMI SE) of PANI and PANI/S-RGO nanocomposites were measured via open-ended coaxial probe set-up connected to a Vector Network Analyser (VNA) at a broadband frequency range of 1–20 GHz (1000–20000 MHz). For EMI SE measurements the various nanomaterials were incorporated into paraffin wax and made into composite pellets of thickness 5 mm by solution casting technique. The dielectric properties, electrical conductivity and EMI SE were all greatly enhanced for the PANI/S-RGO/Paraffin composite pellets. The as synthesized PANI/S-RGO/Paraffin composite pellets exhibited highest EMI SE of ?22.5 dB (>99%) as compared to ?15.89 dB of PANI/Paraffin composite pellets. The prepared composite pellets revealed an absorption dominant mechanism of shielding with highest SEA of ?14.6 dB for PANI/S-RGO/Paraffin composite pellets.  相似文献   

11.
Polyvinyl chloride (PVC)/graphene and poly(methyl methacrylate) (PMMA)/graphene nanocomposites were made by solution casting technique with graphene weight fractions of 1, 5, 10, 15, and 20%. Multilayer structures of the composites were made by hot compression technique to study their electromagnetic interference shielding effectiveness (EMI SE). Tensile strength, hardness, and storage modulus of the nanocomposites were studied in relation with graphene weight fraction. There has been a substantial increase in the electrical conductivity and EMI SE of the composites with 15–20% filler loading. Differential thermal analysis of the composites shows improved thermal stability with an increase in graphene loading. PMMA/graphene composites have better thermal stability, whereas PVC/graphene composites have superior mechanical properties. About 2 mm thick multilayer structures of PMMA/graphene and PVC/graphene composites show a maximum EMI SE of 21 dB and 31 dB, respectively, in the X band at 20 wt % graphene loading. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47792.  相似文献   

12.
This study uses the solution mixing method to combine plasticized polyvinyl alcohol (PVA) as a matrix, and multiwalled carbon nanotubes (MWCNTs) as reinforcement to form PVA/MWCNTs films. The films are then laminated and hot pressed to create PVA/MWCNTs composites. The control group of PVA/MWCNTs composites is made by incorporating the melt compounding method. Diverse properties of PVA/MWCNTs composites are then evaluated. For the experimental group, the incorporation of MWCNTs improves the glass transition temperature (Tg), crystallization temperature, Tc), and thermal stability of the composites. In addition, the test results indicate that composites containing 1.5 wt % of MWCNTs have the maximum tensile strength of 51.1 MPa, whereas composites containing 2 wt % MWCNTs have the optimal electrical conductivity of 2.4 S/cm, and electromagnetic shielding effectiveness (EMI SE) of ?31.41 dB. This study proves that the solution mixing method outperforms the melt compounding method in terms of mechanical properties, dispersion, melting and crystallization behaviors, thermal stability, and EMI SE. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43474.  相似文献   

13.
A surface treatment was applied to carbon black to improve the electrical and microwave properties of poly(ethylene terephthalate) (PET)-based composites. Three different formamide solutions with 1, 2, and 3 wt % concentrations were prepared to modify the surface chemistry of carbon black. Microwave properties such as the absorption loss, return loss, insertion loss, and dielectric constant were measured in the frequency range of 8–12 GHz (X-band range). Composites containing formamide-treated carbon black exhibited enhancements in the electrical conductivity, electromagnetic interference (EMI) shielding effectiveness, and dielectric constant values when compared to composites with untreated carbon black. In addition, increases in the formamide solution concentration and carbon black content of composites resulted in an increase in the electrical conductivity, EMI shielding effectiveness, and dielectric constant values. The percolation threshold concentration of PET composites shifted from a 3 to 1.5 wt % carbon black composition with the surface treatment. The best EMI shielding effectiveness was around 27 dB, which was obtained with the composite containing 8 wt % carbon black treated with a 3 wt % formamide solution. Moreover, this composition gave the lowest electrical resistivity and the highest dielectric constant among the produced composites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

14.
Glass fiber/epoxy resin composites (GF/EP) using one and three multi-walled carbon nanotube buckypapers (BP) were obtained and their complex parameters, reflectivity, and electromagnetic interference (EMI) shielding effectiveness (SE) at X-band (8.2–12.4 GHz) and Ku-band (12.4–18 GHz) were evaluated. The preparation of BP used polyacrylonitrile (PAN) nanofibers (PF These composites show both large storage and energy loss capacity in both bands revealing promising results related to EMI SE applications. Besides, a high attenuation of around 67% and 72% were achieved for BP based composites. The cross-section view of the buckypaper and the laminates was analyzed by scanning electron microscopy (SEM). The incorporation of the CNT film into the laminates showed no improvements in the elastic properties through dynamic mechanical analyses (DMA). Nevertheless, a decrease in the shear properties by the compression shear test (CST) and interlaminar shear strength (ILSS) has been observed. GF/EP/BP/PF composite presented a reduction of 29 and 39% in its ILSS properties compared to the base laminate (GF/EP). Also, the decrease was even more significant, revealing a steep reduction in its CST properties. On the other hand, the removal of the pan nanofiber (PF) led to better mechanical properties for GF/EP/BP/RPF composites. Results have shown ILSS values of 47.4 ± 2.2 MPa which are close to the base laminate (52.4 ± 3.1 MPa). The removal of the PF provided larger porous in the CNT network, making the impregnation by epoxy easier in the BP/RPF which resulted in improved shear properties compared to GF/EP/BP/PF samples.  相似文献   

15.
The hexagonal boron nitride nanoparticles (h-BNNPs) reinforced flexible polyvinylidene fluoride (PVDF) nanocomposite films were prepared via a simple and versatile solution casting method. The morphological, thermal and electrical properties of h-BNNPs/PVDF nanocomposite films were elucidated. The electromagnetic interference (EMI) shielding properties of prepared nanocomposite films were investigated in the X-band frequency regime (8–12 GHz). The EMI shielding effectiveness (SE) was increased from 1 dB for the PVDF film to 11.21 dB for the h-BNNPs/PVDF nanocomposite film containing 25 wt% h-BNNPs loading. The results suggest that h-BNNPs/PVDF nanocomposite films can be used as lightweight and low-cost EMI shielding materials.  相似文献   

16.
Multilayer graphene/polymer composite films with good mechanical flexibility were fabricated into paraffin-based sandwich structures to evaluate electromagnetic interference (EMI) shielding. Experimental results showed the relationship between electrical properties and shielding performance, demonstrating that electrical properties are significant factors in EMI shielding. Calculation based on electrical conductivity of the composite films was carried out to investigate the fundamental mechanisms of absorption, reflection and multiple-reflections for the polymeric graphene composite films. Both experimental and calculated results indicate that reflection is the dominating shielding mechanism for the as-fabricated polymeric graphene films. The optimization of thickness, skin depth and electrical conductivity in the shielding materials could be highly significant in achieving enhanced EMI shielding. Further improvement in absorption shielding has been achieved by increasing the shielding thickness in order to enhance the overall shielding performance. The optimized shielding effectiveness up to 27 dB suggested effective shielding of the composite films. The implication of the mechanisms for optimizing shielding performance demonstrates significant fundamental basis for designing high-performance EMI shielding composites. The results and techniques also promise a simple and effective approach to achieve light-weight graphene-based composite films for application potentials in EMI shielding coatings.  相似文献   

17.
18.
《Ceramics International》2022,48(16):22845-22853
Effective electromagnetic interference (EMI) shielding materials have garnered substantial interest for their efficacy in attenuating electromagnetic wave energy, ensuring data confidentiality, ensuring the operational stability of fragile electronic systems. To begin, artificially cultured diatom frustules (DF)-derived porous silica (DFPS) skeletons were constructed as templates in this study. Porous ceramics hot-pressed at 800 °C displayed a high compressive strength with a high specific surface area due to their three-dimensional (3D) multilayered and porous structures. Then, mechanically robust Ti3C2Tx/DFPS composites with exceptional EMI shielding performance were fabricated by immersing porous DF-based ceramics into Ti3C2Tx solutions and annealing in an argon environment to increase the materials’ shielding efficiency (SE). The EMI SE of composites hot-pressed at 800 °C achieved the maximum EMI SE of 43.2 dB in the X-band and a compressive strength of 67.5 MPa, establishing a hitherto unreported balance of mechanical characteristics and shielding performance. Prolonged transmission paths, multiple dissipation, scattering and reflection of electromagnetic energy were achieved using a well-maintained hierarchical porous silica framework decorated with MXene, with adsorption caused by surface MXene serving as the primary shielding mechanism for the composites. Due to their superior overall performance, MXene/DFPS EMI shielding composites have a bright future in the aircraft sector as delicate electronic device components.  相似文献   

19.
Three types of single-walled carbon nanotube (SWCNT) homogeneous epoxy composites with different SWCNT loadings (0.01-15%) have been evaluated for electromagnetic interference (EMI) shielding effectiveness (SE) in the X-band range (8.2-12.4 GHz). The effect of the SWCNT structure including both the SWCNT aspect ratio and wall integrity, on the EMI SE have been studied and are found to correlate well with the conductivity and percolation results for these composites. The composites show very low conductivity thresholds (e.g. 0.062%). A 20-30 dB EMI SE has been obtained in the X-band range for 15% SWCNT loading, indicating that the composites can be used as effective lightweight EMI shielding materials. Furthermore, their EMI performance to radio frequencies is found to correspond well with their permittivity data.  相似文献   

20.
《Ceramics International》2022,48(2):1889-1897
SiC fiber reinforced ceramic matrix composites (SiCf-CMCs) are considered to be one of the most promising materials in the electromagnetic (EM) stealth of aero-engines, which is expected to achieve strong absorption and broad-band performance. Multiscale structural design was applied to SiCf/Si3N4–SiOC composites by construction of micro/nanoscale heterogeneous interfaces and macro double-layer impedance matching structure. SiCf/Si3N4–SiOC composites were fabricated by using SiC fibers with different conductivities and SiOC–Si3N4 matrices with gradient impedance structures to improve impedance matching effectively. Owing to its unique structure, SiCf/Si3N4–SiOC composites (A3-composites) achieved excellent EM wave absorption performance with a minimum reflection coefficient (RCmin) of ?25.1 dB at 2.45 mm and an effective absorption bandwidth (EAB) of 4.0 GHz at 2.85 mm in X-band. Moreover, double-layer SiCf/Si3N4–SiOC with an improved impedance matching structure obtained an RCmin of ?56.9 dB and an EAB of 4.2 GHz at 3.00 mm, which means it can absorb more than 90% of the EM waves in the whole X-band. The RC is less than ?8 dB at 2.6–2.8 mm from RT to 600 °C in the whole X-band, displaying excellent high-temperature absorption performance. The results provide a new design opinion for broad-band EM absorbing SiCf-CMCs at high temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号