首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cellulose microfibers were obtained from Hibiscus sabadariffa by steam explosion technique. Structural and surface analysis of the microfibers showed a reduction in diameter and changes in surface morphology from that of raw fibers. The chemical composition of fibers showed increase in α‐cellulose content and decrease in lignin and hemicelluloses for the microfibers. These factors were further confirmed by XRD, SEM, and FTIR results. The CMF were introduced to EVA at different loading by melt extrusion. The composites were analyzed for their thermal stability and phase transition using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). TGA analysis of the composites showed increased onset temperatures for composites compared with pure EVA indicating the superior thermal stability of the composites with fiber loading. DSC analysis shows increase in melting enthalpy and percentage crystallinity with fiber loading increases. Kinetic parameter for the degradation of the composites was obtained using Broido, Coats–Redfern, and Horowitz‐Metzger methods. POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers  相似文献   

2.
Electrospinning is a facile method for preparing nanocomposite materials in fiber form. Nanomaterials that have been incorporated within such fibers are usually inorganic in nature. Recently, nanocomposite nanofibers based on poly(vinyl alcohol) (PVA) as the matrix and nanocrystals of α‐chitin (i.e. chitin whiskers; ca 31 nm in width and ca 549 nm in length on average) as the nanofiller have been successfully prepared. In the study reported here, the fibers were further investigated using X‐ray diffraction (XRD) and dynamic mechanical analyses in comparison with the corresponding solvent‐cast films. The average diameters of the PVA/chitin whiskers fibers ranged between 175 and 218 nm. Careful analysis of the wide‐angle XRD patterns of the fiber mats and the films showed that PVA was partially crystalline, and the incorporation of the whiskers within the fibers was confirmed by peaks characteristic to α‐chitin crystals. Dynamic mechanical analysis showed that the fiber mats were weaker than the films and that the relaxation temperatures associated with the glass transition (Tg) of the fiber mats were greater than those of the films. The addition and increasing the amount of the whiskers caused the crystallinity of PVA within the nanocomposite materials to decrease and Tg to increase. The present study shows that the geometry of nanocomposite materials plays a major role in determining their properties. Copyright © 2009 Society of Chemical Industry  相似文献   

3.
In this study, a chemomechanical method was performed to extract nanofibers from rice straw. This procedure included swelling, acid hydrolysis, alkali treatment, bleaching, and sonication. X‐ray diffractometer was employed to investigate the effect of acid hydrolysis conditions and other chemical treatments on the chemical structure of the extracted cellulose fibers. It was concluded that by increasing the acid concentration and hydrolysis time, the crystallinity of the extracted fibers was increased. The optimum acid hydrolysis conditions were found to be 2M and 2 h for the acid concentration and hydrolysis time, respectively. The chemical compositions of fibers including cellulose, hemicelluloses, lignin, and silica were determined by different examinations. It was noticed that almost all the silica content of fibers was solubilized in the swelling step. Moreover, the achieved results showed that the cellulose content of the alkali treated fibers was increased around 71% compared to the raw materials. ATR‐FTIR was applied out to compare the chemical structure of untreated and bleached fibers. The dimensions and morphology of the chemically and mechanically extracted nanofibers were investigated by scanning electron microscopy, field emission scanning electron microscopy, and transmission electron microscopy. The results of the image analyzer showed that almost 50% of fibers have a diameter within a range of 70–90 nm and length of several micrometers. The thermal gravimetric analyses were performed on the untreated and bleached fibers. It was demonstrated that the degradation temperature was increased around 19% for the purified fibers compared to raw materials. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40063.  相似文献   

4.
A steam explosion degumming method coupled with the 16 (44) orthogonal array design was used to investigate the efficient retting of fibers. Four parameters were examined to determine the residual gum and lignin content of retted fibers, and the optimum extraction conditions were determined to be the following: banana fiber moisture content of 10%, 1.2% NaOH, steam pressure of 1.75 MPa, and residence time of 90 s. Under optimized conditions, the experimental yield of residual gum (5.47 ± 0.22%) and lignin (3.78 ± 0.12%) agreed closely with the predicted yield. The chemical composition of the fibers was analyzed, and the retted fibers exhibited an increase in the cellulose content and a decrease in the lignin and hemicellulose contents. This result was further confirmed by XRD and Fourier transform infrared spectroscopy. The scanning electron microscopy analysis of the treated fibers showed a change in their surface morphology compared with that of the raw fibers. Their thermal characterization showed an enhanced thermal stability of the retted fibers compared to the raw fibers. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40598.  相似文献   

5.
A novel cellulose solution, prepared by dissolving an alkali-soluble cellulose, which was obtained by the steam explosion treatment on almost pure natural cellulose (soft wood pulp), into the aqueous sodium hydroxide solution with specific concentration (9.1 wt %) was employed for the first time to prepare a new class of multifilament-type cellulose fiber. For this purpose a wet spinning system with acid coagulation bath was applied. The mechanical properties and structural characteristics of the resulting cellulose fibers were compared with those of regenerated cellulose fibers such as viscose rayon and cuprammonium rayon commercially available. X-ray analysis shows that the new cellulose fiber is crystallographically cellulose II, and its crystallinity is higher but its crystalline orientation is slightly lower than those of other commercial regenerated fibers. The degree of breakdown of intramolecular hydrogen bond at C3[Xam(C3)] of the cellulose fiber, as determined by solid-state cross-polarization magic-angle sample spinning (CP/MAS) 13C NMR, is much lower than other, and the NMR spectra of its dry and wet state were significantly different from each other, indicating that cellulose molecules in the new cellulose fiber are quite mobile when wet. This phenomenon has not been reported for so-called regenerated cellulose fibers.  相似文献   

6.
Aloe vera (AV) gel has been widely used in various medical, cosmetic, and nutraceutical applications. However, AV rind, the tougher outer layer of AV leaves where the cell wall components exists, is currently treated as a fertilizer or waste. This study aimed to investigate the potential of the AV rind as a resource for the production of cellulose nanofibers. Since a detailed analysis of the AV rind has been lacking, chemical composition of rind was analyzed before processing it into nanofibers. The results showed that AV rind has a high proportion of α‐cellulose (57.72% ± 2.18%). AV rind nanofibers (AVRNF) were prepared using chemi‐mechanical process. The morphological analyses showed that most of the isolated fibers were individual fibers under 20 nm. Crystallinity and degree of polymerization of the obtained AVRNF, and mechanical properties of the nanofibrous film were evaluated and compared with the wood nanofibers. Tensile strength of AVRNF film (102 MPa) was comparatively lower than the wood fibers (132 MPa), which was consistent with the lower crystallinity of AVRNF [crystallinity index (CI) = 0.66] as well as the lower degree of polymerization (DP = 396), compared with wood fibers (CI = 0.90, DP = 1297). © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40592.  相似文献   

7.
Crystal structure and mechanical properties of cellulose fibers were studied to investigate the effect of chemical treatment on the fiber. Pretreatment by acetone extraction, mercerization with 3–20% wt/v sodium hydroxide (NaOH), and acrylonitrile (AN) grafting initiated by azo‐bis‐isobutylonitrile were performed. From Fourier transform infrared spectroscopy and wide‐angle X‐ray diffraction quantitative measurements, the pretreated fibers showed an induced slight decrease of crystallinity index. The structural transformation of the fibers from cellulose I to cellulose II was observed at high NaOH concentration of 10–20% wt/v. The amount of grafting, 1.56, 2.94, 6.04, 8.34, or 10.46%, was dependent upon the initiator concentration and the volume of monomer in the reactor. The AN grafted fibers had no transformation of crystalline structure as observed after mercerization. Only a variation of X‐ray crystallinity index with grafting amount was observed. Moisture regain of pretreated and modified fibers depended on the structure of the fiber and the amount of grafting. The mechanical properties performed by a single fiber test method were strongly influenced by the cellulose structure, lateral index of crystallinity, and fraction of grafting. Scanning electron microscopy was used for analysis of surface morphologies of treated fibers. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2456–2465, 2004  相似文献   

8.
Industrial hemp fibers were treated with a 5 wt % NaOH, 2 wt % Na2SO3 solution at 120°C for 60 min to remove noncellulosic fiber components. Analysis of fibers by lignin analysis, scanning electron microscopy (SEM), zeta potential, Fourier transform infrared (FTIR) spectroscopy, wide angle X‐ray diffraction (WAXRD) and differential thermal/thermogravimetric analysis (DTA/TGA), supported that alkali treatment had (i) removed lignin, (ii) separated fibers from their fiber bundles, (iii) exposed cellulose hydroxyl groups, (iv) made the fiber surface cleaner, and (v) enhanced thermal stability of the fibers by increasing cellulose crystallinity through better packing of cellulose chains. Untreated and alkali treated short (random and aligned) and long (aligned) hemp fiber/epoxy composites were produced with fiber contents between 40 and 65 wt %. Although alkali treatment generally improved composite strength, better strength at high fiber contents for long fiber composites was achieved with untreated fiber, which appeared to be due to less fiber/fiber contact between alkali treated fibers. Composites with 65 wt % untreated, long aligned fiber were the strongest with a tensile strength (TS) of 165 MPa, Young's modulus (YM) of 17 GPa, flexural strength of 180 MPa, flexural modulus of 9 GPa, impact energy (IE) of 14.5 kJ/m2, and fracture toughness (KIc) of 5 MPa m1/2. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
Regenerated cellulose fibers were fabricated by dissolution of cotton linter pulp in NaOH (9.5 wt%) and thiourea (4.5 wt%) aqueous solution followed by wet-spinning and multi-roller drawing. The multi-roller drawing process involved three stages: coagulation (I), coagulation (II) and post-treatment (III). The crystalline structure and morphology of regenerated cellulose fiber was investigated by synchrotron wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) techniques. Results indicated that only the cellulose II crystal structure was found in regenerated cellulose fibers, proving that the cellulose crystals were completely transformed from cellulose I to II structure during spinning from NaOH/thiourea aqueous solution. The crystallinity, orientation and crystal size at each stage were determined from the WAXD analysis. Drawing of cellulose fibers in the coagulation (II) bath (H2SO4/H2O) was found to generate higher orientation and crystallinity than drawing in the post-treatment (III). Although the post-treatment process also increased crystal orientation, it led to a decrease in crystallinity with notable reduction in the anisotropic fraction. Compared with commercial rayon fibers fabricated by the viscose process, the regenerated cellulose fibers exhibited higher crystallinity but lower crystal orientation. SAXS results revealed a clear scattering maximum along the meridian direction in all regenerated cellulose fibers, indicating the formation of lamellar structure during spinning.  相似文献   

10.
Simple esterification and etherification reactions were applied to steam‐exploded Flax (Linum usitatissimum) with the aim of changing the surface properties through modification of fiber surface chemistry. Native and chemically modified cellulose fibers were characterized in terms of thermal stability, surface chemistry, morphology, and crystal structure. Independent of the substituent nature, chemically modified fibers exhibited a thermal stability comparable to that of native cellulose. Introduction of the desired chemical groups at the fiber surface was demonstrated by TOF‐SIMS analysis, whereas FTIR showed that the substitution reaction involved only a small fraction of the cellulose hydroxyls. No change of the native crystalline structure of cellulose fibers was caused by chemical modification, except in the case where ether substitution was carried out in water‐isopropanol medium. Cellulose fibers with unchanged structure and morphology and carrying at the surface the desired chemical groups were obtained for reinforcing applications in polymer composites. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 38–45, 2002  相似文献   

11.
An environmentally friendly bleached extruder chemi‐mechanical pulp fiber or wood flour was melt compounded with poly(lactic acid) (PLA) into a biocomposite and hot compression molded. The mechanical, thermal, and rheological properties were determined. The chemical composition, scanning electron microscopy, and Fourier transform infrared spectroscopy results showed that the hemicellulose in the pulp fiber raw material was almost completely removed after the pulp treatment. The mechanical tests indicated that the pulp fiber increased the tensile and flexural moduli and decreased the tensile, flexural, and impact strengths of the biocomposites. However, pulp fiber strongly reinforced the PLA matrix because the mechanical properties of pulp fiber‐PLA composites (especially the tensile and flexural strengths) were better than those of wood flour‐PLA composites. Differential scanning calorimetry analysis confirmed that both pulp fiber and wood flour accelerated the cold crystallization rate and increased the degree of crystallinity of PLA, and that this effect was greater with 40% pulp fiber. The addition of pulp fiber and wood flour modified the rheological behavior because the composite viscosity increased in the presence of fibers and decreased as the test frequency increased. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44241.  相似文献   

12.
Piassava (Attalea funifera) fibers subjected to several surface chemical treatments and as‐received raw fibers were compared with respect to their thermal and tensile behaviors. The thermal degradation of the raw fibers was characterized by three main stages that corresponded to water release at low temperatures, decomposition of hemicellulose, and decomposition of α cellulose. Mercerization acted mainly on hemicellulose removal, and there was no change in the hydrophilic behavior of the fibers. The removal of hemicellulose split the fibers into microfibrils and favored the thermal decomposition of α cellulose. The same behavior was observed when the fibers were subjected to mercerization and acetylation. The fibers subjected to only acetylation showed thermal behavior similar to that of the raw fibers. With the acetylation treatment, a minor decrease in the hydrophilic character of the fibers was noted. Despite some differences in the thermal behavior, the tensile strengths of the raw and treated fibers were statistically equal. Complementary Fourier transform infrared and scanning electron microscopy analysis corroborated the thermogravimetric analysis/differential thermogravimetry results. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
The chemical and instrumental analysis of alkali‐treated Borassus fibers is carried out to explore the possibility of their use as reinforcement in green composites. The chemical analysis shows presence of α‐cellulose, hemicellulose, and lignin. This is further confirmed by FTIR and high‐resolution solid‐state 13C NMR spectroscopy. The influence of alkali treatment on morphology and mechanical properties is attempted by SEM and UTM techniques, respectively. The wide‐angle X‐ray diffraction analysis of the native and treated fibers shows that alkali treatment influences the crystallinity of the fibers. The efficacy of the Borassus fibers (native and treated) as a component of green composites is discussed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
《分离科学与技术》2012,47(18):3091-3099
ABSTRACT

Asclepias syriaca L., has been recently grown in Quebec, Canada, for commercial applications. Because of lack of information on the chemical composition of this fiber, a study has been conducted to isolate the components using three different procedures of extraction. Then, these components have been analyzed by different techniques, including FTIR, SEM, XPS, and GC/MS. Moreover, the crystallinity index (CI) of the cellulose component has been measured according to well-known XRD methods. Experimental results shows that Asclepias syriaca is constituted of 40–45% cellulose, 35–40% hemicellulose, 15% lignin, 3% free sugars, and 3% wax. The CI of cellulose lays between 60% and 70%.  相似文献   

15.
Cellulose/poly(furfuryl alcohol) (PFA) composites were prepared via in situ polymerization process using p‐toulene sulfonic acid as a catalyst. Cellulose was extracted from cotton fibers using chemical treatments with basic media of NaOH, NaClO2 and KOH. Acid hydrolysis at different concentrations (30, 40 and 50%) of sulphuric acid was used and the final suspended cellulose was incorporated in PFA. The treatments of the cotton fibers ensued to higher crystalline cellulose which was proportional to sulphuric acid contents. Scanning electron microscopy studies (SEM) results showed a poor interfacial interaction when 50% acid content was used for hydrolyses. The effect of fiber reinforcement on thermal and dynamic mechanical properties of the composites was investigated using thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMTA). The TGA results showed higher thermal stability of cellulose/PFA composites as compared to the neat PFA. The DMA results showed that the incorporation of the cellulose fibers imparts significant enhancement in the storage modulus of the PFA matrix. There was also the clear decrease in intensity of the tan peak of the composites compared to the neat PFA. POLYM. COMPOS., 37:2434–2441, 2016. © 2015 Society of Plastics Engineers  相似文献   

16.
Cellulose nanofibers (CNFs) were isolated from kenaf fibers and wheat straw by formic acid (FA)/acetic acid (AA), peroxyformic acid (PFA)/peroxyacetic acid (PAA), hydrogen peroxide (H2O2) treatment; and subsequently through ball milling treatment. Characterization of extracted cellulose and cellulose nanofibers was carried out through Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray diffraction (XRD), and thermogravimetric analysis (TGA). TEM images showed that extracted cellulose nanofibers had diameter in the range of 8–100 nm. FTIR and XRD results implied that hemicellulose and lignin were mostly removed from lignocellulosic biomass with an increase in crystallinity, and isolation of cellulose nanofibers was successful. The TGA results showed that decomposition temperature of cellulose nanofibers increased by about 27°C when compared with that of untreated lignocellulosic biomass. No significant change was observed in the decomposition temperature of bleached celluloses after ball milling. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42990.  相似文献   

17.
Dissolving‐grade wood pulp fibers were partially esterified by mixed p‐toluene sulfonic/hexanoic acid anhydride in a nonswelling suspending agent. A biphasic morphology was revealed by atomic force microscopy (AFM) for the compression‐molded, partially modified pulp fibers. The AFM phase images indicated distinct periodicity on the scale of several 10's of nanometers. Surface etching with cellulolytic enzymes of the modified pulp fibers produced height images that had virtually the same periodicity. These results indicate that the modified pulp fibers are nanocomposites comprising unmodified cellulose and cellulose hexanoate. Regenerated lyocell fibers (from N,MMNO solvent) subjected to the same esterification system as applied to pulp fibers, by contrast, exhibited AFM phase images that indicated a high level of surface (skin) versus core reactivity. Modified lyocell fibers with an average diameter of about 12 μm and having an overall DS of 0.6 had surface layers that were approximately 1 μm thick. The latter represented a transitional phase in which the chemical composition and the physical properties were intermediate between a highly substituted surface (skin) and an unsubstituted core. When a compression‐molded sheet of the modified lyocell fibers was analyzed by microthermal analysis, the thermoplastic matrix on the lyocell fiber surface was revealed to have an apparent Tg of 75°C corresponding to cellulose hexanoate, whereas no significant thermal transition was determined for the (unmodified) fiber core. These results suggest that both partially modified lyocell fibers and partially modified pulp fibers are capable of producing composites with morphologies that have grossly different scales. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2254–2261, 2000  相似文献   

18.
Composites reinforced with natural plant fibers are currently actively researched. Inverse gas chromatography (IGC) is a technique that is used to characterize the surface energy and polar characteristics of materials. The theoretical approaches used with IGC are reviewed and applied to the study of 14 ligno‐cellulosic fiber types including grass fibers, bast fibers, leaf fibers, seed fibers, and fruit fibers. This was done to provide insight into the impact of fiber composition on the surface characteristics of the different fiber types and explore possible correlations among the data. The dispersive surface energy, and Ka, Kb constants are reported for the 14 fiber types and compared with values reported in the literature. The dispersive energies ranged from 35.5 mJ/m2 to 44.2 mJ/m2 at 20°C with Ka from 0.01 to 0.38 and Kb from 0 to 1.05. A correlation was found at 40°C for surface energy related to fiber composition and fiber type where the surface energy decreases with increasing lignin and hemicellulose composition but increased with increasing cellulose concentration. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

19.
The chemical, physico-mechanical, morphological, and thermal characteristics of alkali treated natural cellulosic sustainable eco-friendly fiber from peduncle of Areca Catechu tree were investigated. Areca Catechu fruit peduncle fiber (ACFPF) treated with 5% (w/v) NaOH solution for 60 min is found as optimally alkali treated ACFPF (OAACFPF) witnessed an increase in cellulose content by 17%. Single fiber tensile test perceived that OAACFPF enhanced tensile strength by 12.9% and x-ray diffraction analysis depicts crystallinity index of OAACFPF improved by 14.2% compared with ACFPF. Also, Fourier transform infrared spectroscopy analysis endorsed partial removal of amorphous contents from fibers due to alkali treatment. In addition, alkali treatment has enhanced thermal stability of OAACFPF from 226°C to 235°C verified through Thermogravimetric analysis. Likewise, Differential scanning calorimetry analysis confirmed improvement in thermal degradation temperature of OAACFPF after alkali treatment. Moreover, the rougher surface of OAACFPF confirmed through scanning electron microscope and atomic force microscopy is due to partial removal of amorphous contents thus ensuing in good interfacial bonding characteristics with the matrix during reinforcement for bio-composite fabrication. The above findings validated OAACFPF as a worthy substitute to harmful synthetic fibers for development of eco-friendly and sustainable bio-composites.  相似文献   

20.
In this article, we present an efficient method for isolating cellulose nanofibers from para rubberwood sawdust with a combination of chemical, mechanical, and ultrasonic treatments. The effects of the alkali concentration and treatment pathway on the cellulose structure and properties are discussed. The reinforcing efficiency of the resulting fibers on poly(vinyl alcohol) (PVA) composites was characterized. Field emission scanning electron microscopy and atomic force microscopy results revealed a well-organized network of the nanofibers with diameters in the range 20–80 nm and lengths of micrometer-scale dimensions. Fibers with a high crystallinity of 83% having a cellulose I structure were prepared by an isolation process involving a mild alkali solution and delignification before acid hydrolysis. Clear composite films with significant improvements in their modulus (by 100%) and strength (by 80%) were obtained by the addition of 7 wt % fiber. Strong interaction between the fibers and PVA was evident from dynamic mechanical analysis and differential scanning calorimetry. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号