首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermally expandable microspheres were synthesized by the suspension polymerization of methyl methacrylate (MMA) and styrene (St) in the presence of paraffin blowing agents. The effect of the monomer composition, the initiator, the blowing agent, the polymerization temperature on the morphology and structure of microspheres were studied. The results showed that AIBN initiated the water phase polymerization of MMA to form secondary polymer particles adsorbed on the surface of the microspheres. MMA diffused from the oil phase to the water phase, which accelerated the phase separation and facilitated the formation of core-shell microspheres. However, LPO could not initiate the water phase polymerization, the phase separation was slow and there was an intermediate state with a porous surface. When the boiling point of the blowing agent was lower than the polymerization temperature, the microspheres were porous and there were a large number of holes on the surface.  相似文献   

2.
The viability of the application of hydrolysable polymers, such as poly(methylene oxide) (PMO) and poly(glycolic acid) (PGA), in formation treatments in oil wells, was studied; we examined their addition to inflow control devices (ICDs), which are instruments used to control the oil‐flow profile along production intervals. Thereby, the structural and morphological changes of PMO and PGA samples exposed to common chemicals, such as hydrochloric acid (HCl) and sodium chloride (NaCl) solutions and xylene, used in the procedure were evaluated under conditions similar to those observed in southeastern Brazilian offshore oil fields (temperature range = 50–130 °C, 41.4 MPa). The aim of this study was to verify whether the polymers hydrolyzed and could be further removed from the ICDs. Techniques including high‐pressure liquid chromatography, ion chromatography, 13C‐NMR, differential scanning calorimetry, scanning electron microscopy, and optical microscopy were applied in this study. Xylene did not produce expressive effects in the samples. PMO was significantly affected by 15% HCl at 75 °C but was not completely dissolved after 24 h of exposure; this counter indicates its use. The PGA hydrolysis profile in NaCl brine was suitable for application around 75 °C. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43786.  相似文献   

3.
The drilling of petroleum wells requires the use of suitable drilling fluids to ensure efficient operation without causing rock damage. Specific polymers have been used to control infiltration during drilling, to reduce operational problems. In this study, spherical microparticles of poly(methyl methacrylate‐co‐vinyl acetate) were synthesized (by suspension polymerization), characterized, and evaluated in terms of their performance in controlling filtrate loss of aqueous fluids. A filter press test with ceramic disk, simulating the rock, was used. The performance of the synthesized materials was compared with commercial polymers. It was observed that the performance of the material is directly associated with the relation between particle size and pore size of the rock specimen. Furthermore, for a suitable particle size, the rubbery characteristic of the material produces a more efficient filter cake, for filtrate control. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40646.  相似文献   

4.
In this paper, a hydrophobic monomer (HM) that has a cationic double alkyl‐substituted group bonded to the nitrogen atom was first synthesized. Then a hydrophobic poly(vinyl alcohol) (PVA) was prepared by a radical solution copolymerization of vinyl acetate (VAc) with the HM followed by an alcoholysis reaction in alkaline conditions. The structures of HM and hydrophobically modified PVA (H‐PVA) were confirmed by Fourier transform infrared spectroscopy and nuclear magnetic resonance. The effect of hydrophobic cationic segments on crystallization behaviors, mechanical properties, morphology, solution viscosity, and hydrophobic property were investigated. The results indicated that the crystallinity decreased from 37.2% of pure PVA to the minimum 23.2% of H‐PVA with the incorporation of 1.15 mol % HM. The thermal decomposition temperature of H‐PVA increased by about 50 °C compared with that of pure PVA. The viscosity of the H‐PVA solution was several times higher than that of the corresponding unmodified PVA solution over the whole shear rate range, which demonstrated that the H‐PVA had good shear‐resistance ability. Furthermore, the contact angle was significantly increased from 55.1° to 115° with the incorporation of only 0.83% HM, which illustrated that the H‐PVA had high hydrophobicity. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43888.  相似文献   

5.
One of the methods to prevent wax precipitation, during petroleum production, transport, and refining, is the use of polymer additives that can reduce the oil pour point. However, no single additive work for all types of crude oil and this relation is not yet well known. In this study, a family of polymers based on poly(ethylene-co-vinyl acetate), containing hydroxyl groups and long pendant hydrocarbon chains (from C6 to C18), were synthesized and characterized by H1 nuclear magnetic resonance and solubility test. Four crude oil samples containing different amounts and size distribution of the wax were used. The additive's action is favored by higher contents of iso + cycloalkanes and lower contents of n-paraffins with larger chain sizes. The presence of the CH3COO group in the copolymers promoted the lowering of the pour point, supported by a low OH concentration and the presence of a long pendant hydrocarbon chain: the best results were obtained with C10 and C12 chain lengths. © 2020 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48969.  相似文献   

6.
Hyperbranched poly(amido amine) demulsifier (PDDM) was synthesized by a modified “one-pot” method with 4,4-diaminodiphenyl methane as the central core and ethylenediamine as the interior branches. The structure of the demulsifier was confirmed by proton nuclear magnetic resonance and Fourier transform infrared. The effects of the temperature and PDDM concentration on the demulsification performance were investigated, and PDDM performance was compared to that of the hyperbranched demulsifier with 1,3-propanediamine as the central core. When the emulsions were treated with the demulsifier concentration of 50 mg L−1 at 60 °C for 120 min, the light transmittance and removed total organic content of the aqueous phase reached 87.4 and 99.72%, respectively. At the optimal demulsification temperature of 60 °C, the surface tension reduction and the critical micelle concentration were 27.38 mN m−1 and 1.30 × 10−3 mol L−1, respectively. The combination of surface tension and interfacial tension measurements and the analysis of micrographs and particles sizes provide evidence for the possible demulsification mechanism. The excellent demulsification performance of the hyperbranched demulsifier indicates that it has great potential for use in the demulsification of oil-in-water emulsions. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48846.  相似文献   

7.
The application of octatrimethylsiloxy polyhedral oligomeric silsesquioxane (POSS) nanoparticles was investigated in the fabrication of novel reverse‐selective poly(4‐methyl‐2‐pentyne) (PMP) nanocomposite membranes for the separation of heavier hydrocarbons from methane. Generally, PMP and PMP–fumed silica (FS) nanocomposite membranes suffer severe physical aging with approximately 40% permeation flux reduction over 120 days. A straightforward strategy was introduced to suppress the physical aging of PMP and also to improve the thermal stability without compromising the selectivities and permeabilities through the incorporation of a functionalized POSS–FS binary filler system. Fourier transform infrared spectroscopy and scanning electron microscopy proved productive interactions between the fillers and polymer, with a fair compatibility between them. Thermogravimetric analysis confirmed that the thermal stability of the neat PMP was enhanced by the incorporation of the fillers into the nanocomposites. The addition of POSS and FS led to improved operational performance, such as in the permeability and selectivity, over the neat PMP. The permeation stabilities of the PMP–POSS and PMP–FS–POSS nanocomposite membranes were clearly improved over a long time (120 days). The permeation data indicated that the PMP–3 wt % POSS–20 wt % FS nanocomposite membrane is promising for C3H8/N2 and C3H8/CH4 separation. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45158.  相似文献   

8.
ABA‐type triblock copolymers were synthesized using 4,4‐(hexafluoroisopropylidene) diphthalic anhydride‐2,3,5,6‐tetramethyl‐1,4‐phenylenediamine (6FDA‐TeMPD) and poly(methyl methacrylate) (PMMA). The films were characterized by determining the effects of different content ratios and thermal decomposition of PMMA block on CO2 sorption properties. TGA results showed that a thermal labile block can be completely decomposed under a previously reported thermal condition. SEM results presented that the asperity was micro‐phase separation caused by the PMMA block content rate. Numerous pores with sizes of approximately 10 to 50 nm were detected on Block(28/72) and Block(10/90). The isotherms of all films fitted the dual‐mode sorption model, and CO2 sorption decreased with increased PMMA content rate. Infinite‐dilution CO2 solubility depended on the Langmuir's site of each polymer because SH0/S0 of PI and Block(PI/PMMA) varied from 0.84 to 0.92 CO2 affinity was increased by thermal treatment as indicated by the higher b and S0 values of thermally treated films than those of nontreated films. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42208.  相似文献   

9.
Kinetic hydrate inhibitors (KHIs) are water-soluble polymers that are used to prevent gas hydrate formation in flow lines during upstream oil and gas production. All commercial polymers have pendant hydrophobic moieties with saturated carbon–carbon bonds. In our previous studies, poly(N-vinylamide) derivatives bearing alkyl groups and ethylene glycol groups were synthesized and investigated as KHIs. For comparison, we have now synthesized poly(N-vinylamide) derivatives in which an alkenyl group has been introduced at the N-position to improve the rigidity and steric hindrance of the side chain. The KHI performances of synthesized polymers were evaluated by the method of tetrahydrofuran (THF) hydrate crystal growth. The molecular weight of the synthesized polymers affected their ability to inhibit THF hydrate crystal growth. Higher molecular weight polymers, above 4,000 g/mol, tended to show higher inhibition efficiencies compared with lower molecular weight polymers of around 1,000 g/mol. However, the KHI performance of poly(N-vinylamide) derivatives bearing alkenyl groups was generally lower than the polymers in the previous studies. This indicates that the side chain rigidity and/or steric hindrance do not significantly influence the KHI performance.  相似文献   

10.
Yu Zhou  Zhilan Liu 《Polymer》2004,45(16):5459-5463
Novel biodegradable triblock copolymers of poly(5-methyl-5-methoxycarbonyl-1,3-dioxan-2-one) (PMMTC) with poly(ethylene glycol) (PEG), PMMTC-b-PEG-b-PMMTC, were synthesized by the ring-opening polymerization of MMTC in bulk, using the dihydroxyl PEG as initiator and Sn(Oct)2 as catalyst. The triblock copolymers with different compositions were characterized by IR and 1H NMR, their molecular weight was measured by gel permeation chromatography (GPC). The results showed that the molecular weight of triblock copolymers increased either with the increase of the molar ratio of MMTC in feed while the PEG chain length kept constant, or by lengthening the backbone chain of PEG block with the same ratio of MMTC in feed. The hydrophilicity of copolymers was greatly improved by incorporation of PEG block into polycarbonate. The in vitro hydrolytic/enzymatic degradation and controlled drug release properties of the triblock copolymers were also investigated.  相似文献   

11.
ABA‐type amphiphilic triblock copolymers (TBCs) were synthesized by a reversible addition fragmentation chain transfer (RAFT) process with a telechelic polystyrene macro‐RAFT agent and 4‐[n‐(acryloyloxy)alkyloxy]benzoic acid monomers. Ultrafiltration (UF) membranes were fabricated by a phase‐inversion process with blends of the TBC, poly(vinylidene fluoride) (PVDF), and poly(vinyl pyrrolidone) (PVP) in dimethylformamide. The UF‐fabricated membranes were characterized by scanning electron microscopy, atomic force microscopy, water contact angle measurement, thermogravimetric analysis, and differential scanning calorimetry. Pure water permeation, molecular weight cutoff values obtained by the permeation of different molecular weight polymers as probe solutes, bovine serum albumin (BSA) solution permeate flux, and oil–water emulsion filtration tests were used to evaluate the separation characteristics of the fabricated membranes. The tripolymer blend membranes exhibited a higher flux recovery ratio (FRR) after the membrane was washed with sodium lauryl sulfate (0.05 wt %) solution for a BSA solution (FRR = 88%) and oil–water emulsion (FRR = 95%) feeds when than the PVDF–PVP blend membrane (57 and 80% FRR values for the BSA solution and oil–water emulsion, respectively). The pendant carboxylic acid functional moieties in this ABA‐type TBC have potential advantages in the fabrication of high‐performance membranes. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45132.  相似文献   

12.
Functional alkoxyamines, 1-[4-(4-lithiobutoxy)phenyl]-1-(2,2,6,6-tetramethylpiperidinyl-N-oxyl)ethane (2) and 1-[4-(2-vinyloxyethoxy)phenyl]-1-(2,2,6,6-tetramethylpiperidinyl-N-oxyl)ethane (3) were prepared, and well-defined poly(hexamethylcyclotrisiloxane)-b-poly(styrene)[poly(D3)-b-poly(St)] and poly(norbornene)-b-poly(St) [poly(NBE)-b-poly(St)] were prepared using the alkoxyamines. The first step was preparation of poly(D3) and poly(NBE) macroinitiators, which were obtained by the ring-opening anionic polymerization of D3 using 2 as an initiator and the ring-opening metathesis polymerization of NBE using 3 as a chain transfer. The radical polymerization of St by the poly(D3) and poly(NBE) macroinitiators proceeded in the ‘living’ fashion to give well-defined poly(D3)-b-poly(St) and poly(NBE)-b-poly(St) block copolymers.  相似文献   

13.
Polymer blending as a modification technique is a useful approach for augmenting the gas‐separation and permeation properties of polymeric membranes. Polysulfone (PSF)/poly(ether sulfone) (PES) blend membranes with different blend ratios were synthesized by conventional solution casting and solvent evaporation technique. The synthesized membranes were characterized for miscibility, morphology, thermal stability, and spectral properties by differential scanning calorimetry (DSC), field emission scanning electron microscopy, thermogravimetric analysis, and Fourier transform infrared (FTIR) spectroscopy, respectively. The permeation of pure CO2 and CH4 gases was recorded at a feed pressure of 2–10 bar. The polymer blends were miscible in all of the compositions, as shown by DSC analysis, and molecular interaction between the two polymers was observed by FTIR analysis. The thermal stability of the blend membranes was found to be an additive property and a function of the blend composition. The morphology of the blend membranes was dense and homogeneous with no phase separation. Gas‐permeability studies revealed that the ideal selectivity was improved by 65% with the addition of the PES polymer in the PSF matrix. The synthesized PSF/PES blend membranes provided an optimized performance with a good combination of permeability, selectivity and thermal stability. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42946.  相似文献   

14.
Adhesives are nonmetallic materials used to bond each layer in many applications for its flexibility. For digital inkjet printing, the requirements of adhesives performance are demanding as they must be able to adhere well to adherend, be removable without leaving adhesive residue, or even causing any damage. Water-based polyacrylates have been widely used for backing adhesive layer in application of digital inkjet printing, due to their various advantages. While the application has been limited on account of the weak frost resistance of common polyacrylates, which could not be used directly under low temperature storage. To improve the weak frost resistance, water-based poly(2-ethylhexyl acrylate-itaconic acid) was synthesized. Itaconic acid (ITA) could be greatly beneficial to improve the frost resistance. The polyacrylates could still be used directly, even after being frozen below at −18°C for 16 hr. The adhesion properties of polyacrylates could also be enhanced by moderate ITA. The results show that the optimal amount of ITA was 2 mass%. The overall properties of the resulting polyacrylates with the 180° peel strength of 2.73 N/25 mm, the tack of 23 #, and the shear holding power of more than 24 hr are suitable for practical applications on removable adhesives for digital inkjet printing.  相似文献   

15.
One kind of branched Poly(vinyl alcohol) has been synthesized via common radical copolymerization of vinyl acetate in methanol by adding a bifunctional monomer Allyl methacrylate (AMA) followed by saponification. The comonomer AMA has two reactive double bonds that can provide the branching points to macromolecule chain structure. With these reactive points, the copolymer with long chain branches can be obtained. The long chain branches bring the copolymer higher viscosity by the entanglement of them between macromolecules and strong hydrogen bonding between long chain branches. The viscosity of the water solutions increased with the amount of the comonomers' addition increased. The branched PVA has good water maintenance properties at relatively high temperature. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4608–4612, 2013  相似文献   

16.
The poly(l ‐lactide)‐b‐poly(ethylene glycol)‐b‐poly(l ‐lactide) block copolymers (PLLA‐b‐PEG‐b‐PLLA) were synthesized in a toluene solution by the ring‐opening polymerization of 3,6‐dimethyl‐1,4‐dioxan‐2,5‐dione (LLA) with PEG as a macroinitiator or by transterification from the homopolymers [polylactide and PEG]. Two polymerization conditions were adopted: method A, which used an equimolar catalyst/initiator molar ratio (1–5 wt %), and method B, which used a catalyst content commonly reported in the literature (<0.05 wt %). Method A was more efficient in producing copolymers with a higher yield and monomer conversion, whereas method B resulted in a mixture of the copolymer and homopolymers. The copolymers achieved high molar masses and even presenting similar global compositions, the molar mass distribution and thermal properties depends on the polymerization method. For instance, the suppression of the PEG block crystallization was more noticeable for copolymer A. An experimental design was used to qualify the influence of the catalyst and homopolymer amounts on the transreactions. The catalyst concentration was shown to be the most important factor. Therefore, the effectiveness of method A to produce copolymers was partly due to the transreactions. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40419.  相似文献   

17.
In this study, the graft copolymerization of N-hydroxymethylacrylamide (NHMAAm) with poly(vinyl alcohol) (PVA) was carried out by using potassium persulfate/N,N,N,N-tetramethylethylenediamine (K2S2O8) to improve physicochemical properties and functionality of PVA. The structures of PVA-g-poly-NHMAAm (PNHMAAm) copolymers were characterized by Fourier transform infrared, elemental analysis, nuclear magnetic resonance (1H-NMR), 13C-NMR, and size exclusion chromatography. Their thermal behaviors were investigated by differential scanning calorimetry and thermogravimetric analysis (TGA). The TGA results indicated that the graft copolymers show better thermal stability then PVA. The effects of reaction time, temperature, NHMAAm, and K2S2O8 concentrations on grafting parameters were examined. The maximum grafting yield (34.01%) was provided when reaction was carried out under optimum conditions (time = 2 hr, T = 40°C, [NHMAAm] = 0.25 M, [K2S2O8] = 4.56 × 10−3 M). Moreover, PVA-g-PNHMAAm membranes were prepared and their swelling behaviors were studied. The results demonstrated that swelling degree of graft membranes increased almost 3.5-fold compared to PVA membrane.  相似文献   

18.
In recent years, much attention has been given to the development of specialty polymers from useful materials. In this context, amphiphilic block copolymers were prepared by atom transfer radical polymerization (ATRP) of N‐phenylmaleimide (N‐PhMI) or styrene using a poly(2‐hydroxyethylmethacrylate)‐Cl macroinitiator/CuBr/bipyridine initiating system. The macroinitiator P(HEMA)‐Cl was directly prepared in toluene by reverse ATRP using BPO/FeCl3 6 H2O/PPh3 as initiating system. The microstructure of the block copolymers were characterized using FTIR, 1H‐NMR, 13C‐NMR spectroscopic techniques and scanning electron microscopy (SEM). The thermal behavior was studied by differential scanning calorimetry (DSC), and thermogravimetry (TG). The theoretical number average molecular weight (Mn,th) was calculated from the feed capacity. The microphotographs of the film's surfaces show that the film's top surfaces were generally smooth. The TDT of the block copolymer P(HEMA)80b‐P(N‐PhMI)20 and P(HEMA)90b‐P(St)10 of about 290°C was also lower than that found for the macroi′nitiator poly(HEMA)‐Cl. The block copolymers exhibited only one Tg before thermal decomposition, which could be attributed to the low molar content of the N‐PhMI or St blocks respectively. This result also indicates that the phase behavior of the copolymers is predominately determined by the HEMA block. The curves reveal that the polymers show phase transition behavior of amorphous polymers. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
The well-defined poly (ε-caprolactone) (PCL)/poly(vinyl pyrrolidone) (PVP) diblock copolymers were synthesized through combining radical polymerization of VP and the controlled coordination-insertion ring-opening polymerization of CL using an aluminum alkoxide macroinitiator formed from the equimolar reaction of triethylaluminum with hydroxy-terminated PVP (PVP-OH). The molecular characterization of PCL/PVP diblock copolymers was confirmed through 1H NMR spectroscopy and GPC analysis. Polymeric micelles composed of PCL as a hydrophobic core and PVP as a hydrophilic shell were prepared by a diafiltration method. The micellar properties such as sizes, shapes, and critical micelle concentrations (CMC) were investigated with a dynamic light scattering (DLS) spectrometer, transmission electron microscope (TEM) and spectrofluorimeter. The sizes of micelles ranged from 30 to 80 nm in average size. The novel micelles formed from the well-defined PCL/PVP diblock copolymers seem to be feasible as novel promising carriers in biomedical and pharmaceutical applications.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号