首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shape-memory polymers (SMPs) are smart materials that change shape when exposed to stimuli and have various applications in different fields due to their unique properties. Light, as a kind of electromagnetic radiation, plays an important role in understanding the structure-property relations of SMPs, preparing original shapes, using them as non-contact stimuli sources, and tuning the optical properties of SMPs. This review provides a comprehensive review of the involvement of light in structure-preparation-stimuli-application of SMPs. The review is divided into four sections. First, applications of optical/spectroscopic approaches that provide information for understanding structure-property relations in SMPs, especially during programming and recovery. Second, describes how to build SMPs with light, including different photochemical reactions and 3D photocuring technologies. Third, discusses how light is used to trigger the shape change of SMPs through both photochemical and photothermal mechanisms. Last, focuses on how to take advantage of the shape-memory effect to tune the optical characteristics of polymers, including various structures of SMP color-changing materials and their synthetic strategies. Future research could focus on developing efficient photothermal fillers, new 3D printing techniques for SMPs, exploring their use in biomedical and wearable devices, and optimizing SMPs for industrial applications.  相似文献   

2.
Shape memory polymers (SMPs) are a novel class of shape memory materials which can store a deformed (temporary) shape and recover an original (permanent) shape under a shape memory thermomechanical loading–unloading cycle. The deformation mechanisms of SMPs are very complicated, but the SMPs also have a lot of advantages and the widespread application value and prospect. So developing proper constitutive models that describe thermomechanical properties of SMPs and the shape memory effect is very challenging and of great theoretical and application value. Based on the deformation mechanisms and considerable experimental investigations of SMPs, researchers have developed many constitutive models. This article investigates the deformation mechanism and introduces the recent research advance of the constitutive models of thermal‐sensitive SMPs. Special emphases are given on the micromechanical constitutive relations in which the deformation is considered being based on the microstructure of the SMPs. Finally, the lack of research and prospects for further research are discussed. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

3.
Fused deposition modeling (FDM) is the trendiest three-dimensional (3D) printing method among additive manufacturing technologies. In this process, the final parts are constructed through layer-by-layer adhesion of thermoplastic polymers. Amorphous thermoplastic polymers have better printability compared to semicrystalline ones; so, they are most popular with FDM users. Generally, the overall mechanical properties of FDM 3D printed parts are weaker in comparison to the traditional methods (such as injection molding) due to the weak bonds between the deposited rasters and layers. Therefore, the introduction of new materials with higher mechanical properties and easy printing process of the semicrystalline polymers has always been challenging to progress the mechanical properties of the products. In this study by the FDM process, the effect of nozzle temperature and heat treatment (annealing) on the mechanical properties of high-temperature polylactic acids is investigated. The increase in the nozzle temperature develops the rasters and layers bonding, and the heat treatment of the parts after printing rises the crystallinity percentage, which is crucial for the improvement of mechanical properties. Experimental results show that an increase in the nozzle temperature raises the tensile strength and modulus to 65.7 MPa and 4.97 GPa, respectively. Furthermore, the heat treatment process increases the tensile strength and modulus up to 67.4 MPa and 5.65 GPa. The final tensile modulus values are the highest ones reported for pure materials printed by the FDM process. POLYM. ENG. SCI., 60:979–987, 2020. © 2020 Society of Plastics Engineers  相似文献   

4.
Recent advances in 3D printing provide great opportunities for the utilization of functional materials in chemical engineering and heterogeneous catalysis. In this work cylindrical monoliths with varying geometries of transport channels are designed and printed by a fused deposition modeling (FDM) 3D printer from thermoplastic polymers. Their hydrodynamic characteristics are investigated. For a proof of concept composite monoliths of microporous hyper-crosslinked polymers (HCP) are printed. They contain up to 40 wt % of HCP with an accessible specific surface area of up to 171 m2g−1.  相似文献   

5.
The printable polyamide 12 (PA12) nanocomposite filaments with 6 wt % graphene nanoplatelets (GNPs) for fused deposition modeling (FDM) were prepared by melting compounding and smoothly printed via a commercial FDM three‐dimensional (3D) printer. The thermal conductivity (λ) and elastic modulus (E) of 3D printed PA12/GNPs parts along to the printing direction had an increase by 51.4% and 7% than that of compression molded parts, which is due to the GNPs preferentially aligning along to the printing direction. Along with these improved properties, ultimate tensile strength of 3D printed PA12/GNPs parts was well maintained. These results indicate that FDM is a new way to achieve PA12/GNPs parts with enhanced λ over compression moulding, which could contribute to realize efficient and flexible heat management for a wide range of applications. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45332.  相似文献   

6.
Shape memory polymers (SMPs) are an emerging class of active polymers that may be used for a range of reconfigurable structures. In this study, the thermomechanical and shape memory behavior of a thermosetting SMP was investigated using large‐scale compressive tests and small‐scale indentation tests. Results show that the SMP exhibits different deformation modes and mechanical properties in compression than in tension. In glassy state, the SMP displays significant plastic deformation and has a much higher modulus and yield strength in comparison to those obtained in tension. In rubbery state, the SMP behaves like a hyperelastic material and again has a much higher modulus than that obtained in tension. The SMPs were further conditioned separately in simulated service environments relevant to Air Force missions, namely, (1) exposure to UV radiation, (2) immersion in jet‐oil, and (3) immersion in water. The thermomechanical and shape recovery properties of the original and conditioned SMPs were examined under compression. Results show that all the conditioned SMPs exhibit a decrease in Tg as compared to the original SMP. Environmental conditionings generally result in higher moduli and yield strength of the SMPs in the glassy state but lower modulus in the rubbery state. In particular, the UV exposure and water immersion, also weaken the shape recovery abilities of the SMPs. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

7.
Shape memory polymers (SMPs) attract widespread attention because they are able to maintain a temporary deformation after unloading and recover the initial shape under high temperature conditions. Based on a three‐dimensionally constitutive equation of SMPs, a finite element program is followed by compiling user‐defined material subroutine, which describes the shape memory behavior of thermo‐mechanical experiment. A honeycomb core using SMP is designed, which has the ability to recover the initial shape after deformation and be used as a smart core for sandwich structures. To prove their advantages in the engineering application, a series of thermodynamic behaviors of the SMP honeycomb core are simulated, including loading at high temperature, cooling, unloading at the low temperature, and recovering original shape on heating. Shape memory behaviors of tensile, compressive, bending, and locally sunken deformations are demonstrated and the effect of time and temperature on the recovery process is discussed. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45672.  相似文献   

8.
Shape‐memory polymers (SMPs) are an emerging class of active polymers that can be used on a wide range of reconfigurable structures and actuation devices. In this study, an epoxy‐based SMP was synthesized, and its thermomechanical behaviors were comprehensively characterized. The stress–strain behavior of the SMP was determined to be nonlinear, finite deformation in all regions. Strain‐energy‐based models were used to capture the complicated stress–strain behavior and shape‐recovery response of the SMP. Among various strain energy functions, the stretch‐based Ogden model provided the best fit to the experimental observations. Compared to the sophisticated models developed for SMPs, the strain‐energy‐based model was found to be reliable and much easier to use for practical SMP designs. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41861.  相似文献   

9.
Shape memory polymers (SMPs) are a class of materials that exhibit the ability to form multiple temporary shapes, with shape change most often occurring upon exposure to heat. Applications of SMPs can be found in many areas such as sensors, packaging, smart fabrics, and most commonly medicine. Often, thermoplastic SMPs are based on block copolymer or blend morphologies that create two distinct phases, which are on the nano- or micro-scale respectively, to facilitate shape fixing and shape recovery. Forced assembly multilayer co-extrusion of commercially available polyurethane (PU) and polycaprolactone (PCL) polymers was used to create a continuous periodic alternating layer architecture that exhibits shape memory behavior. Similar shape memory properties were observed between PU/PCL layers and blends at 50/50 volume composition; however, offset compositions showed significantly different behavior. The layered structure was maintained across all compositions, as compared with blends that exhibit a composition dependent morphology. The difference in morphology was directly attributed to the difference in shape memory behavior observed between layered and blend films with domain sizes on the micro-scale.  相似文献   

10.
Weak mechanical strength and serious mechanical anisotropy are two key limiting factors for three-dimensional (3D) parts prepared by fused deposition modeling (FDM) in industrial applications. In this work, we investigated the relationships between mechanical properties and surface quality of FDM parts with the properties of materials used. Three kinds of polylactide (PLA) filaments, composed of the same PLA matrix but different fillers (carbon fibers and talc), were used to prepare FDM specimens. Due to the nature of FDM process, FDM parts exhibited tensile properties weaker and more anisotropic than their injection-molding counterparts. The presence of fillers affected the tensile properties of FDM parts, especially the degree of mechanical anisotropy. It is found that the interlayer bond governing the mechanical performance of FDM parts was improved since the fillers added in the polymer materials facilitates the molecular diffusion across the bond interface. Also, the surface quality of FDM parts varied with fillers. Neat PLA parts exhibited surface quality superior to the 3D parts printed with composites filaments. This work is believed to provide highlights on the development of polymer composites filament and improvement of mechanical properties of FDM parts. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47824.  相似文献   

11.
ABSTRACT

Conventional 4D printing technologies are realized by combining 3D printing with soft active materials such as shape memory polymers (SMPs) and hydrogels. However, the intrinsic material property limitations make the SMP or hydrogel-based 4D printing unsuitable to fabricate the actuators that need to exhibit fast-response, reversible actuations. Instead, pneumatic actuations have been widely adopted by the soft robotics community to achieve fast-response, reversible actuations, and many efforts have been made to apply the pneumatic actuation to 3D printed structures to realize passive 4D printing with fast-response, reversible actuation. However, the 3D printing of soft actuators/robots heavily relies on the commercially available UV curable elastomers the break strains of which are not suf?cient for certain applications which require larger elastic deformation. In this paper, we present two simple approaches to tune the mechanical properties such as stretchability, stiffness, and durability of the commercially available UV curable elastomers by adding: (i) mono-acrylate based linear chain builder; (ii) urethane diacrylate-based crosslinker. Material property characterizations have been performed to investigate the effects of adding the two additives on the stretchability, stiffness, mechanical repeatability as well as viscosity. Demonstrations of fully printed robotic finger, grippers, and highly deformable 3D lattice structure are also presented.  相似文献   

12.
A method of 3D embossed printing is proposed where both point and line images can be printed on rigid polyvinyl chloride (PVC) shrink films without any consumables, such as paints, primers, dampening solutions, or washes. Embossed lettering and symbols on packaging are intended for people with poor vision, but capable of tactile marking recognition and reading Braille. This 3D printing is based on reversible deformation and stress relaxation in anisotropic glassy polymers by local isometric heat treatment of thermoplastic films under pressure. Films can be protected from counterfeiting by hidden markings due to time separation of information recording onto the film and displaying this information for visual or tactile reading. The results quantify the rate of internal stress relaxation in PVC shrink films at various stages of 3D printing, including tactile sign formation conditions. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43046.  相似文献   

13.
We present a novel method to fabricate SiBCN ceramic components with complex shapes from preceramic polymers by using digital light processing (DLP) 3D printing technology in this research work. The photocurable precursor for 3D printing was prepared by blending high ceramic yield polyborosilazane with photosensitive acrylate monomers. The material formulation and printing parameters were optimized to fabricate complicated SiBCN ceramic components with high precision. The printed SiBCN ceramic materials were pyrolyzed at different temperatures, and retained their fine features after pyrolysis. Their microstructures were characterized by FTIR, XRD and TEM respectively. Furthermore, the thermal stability and mechanical properties of the SiBCN ceramic samples were investigated and discussed in detail. The 3D printed SiBCN ceramic material exhibited excellent thermal stability and resistance to high temperature oxidation up to 1500?°C.  相似文献   

14.
Shape memory polymers (SMPs) have been of great interest because of their ability to be thermally actuated to recover a predetermined shape. Medical applications in clot extracting devices and stents are especially promising. We investigated the thermomechanical properties of a series of Mitsubishi SMPs for potential application as medical devices. Glass transition temperatures and moduli were measured by differential scanning calorimetry and dynamic mechanical analysis. Tensile tests were performed with 20 and 100% maximum strains, at 37 and 80°C, which are respectively, body temperature and actuation temperature. Glass transitions are in a favorable range for use in the body (35–75°C), with high glassy and rubbery shear moduli in the range of 800 and 2 MPa respectively. Constrained stress–strain recovery cycles showed very low hysteresis after three cycles, which is important to know for preconditioning of the material to ensure identical properties during applications. Isothermal free recovery tests showed shape recoveries above 94% for MP5510 thermoset SMP cured at different temperatures. One material exhibited a shape fixity of 99% and a shape recovery of 85% at 80°C over one thermomechanical cycle. These polyurethanes appear particularly well suited for medical applications in deployment devices such as stents or clot extractors. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3882–3892, 2007  相似文献   

15.
Fused filament fabrication (FFF) is the most common form of additive manufacturing. Most FFF materials are variants of commercially available engineering plastics. Their performance when printed can widely vary, thus there is an increasing volume of research on alternative materials with thermal and mechanical performance optimized for FFF. In this work, thiol–isocyanate polymerization is used for the development of a one‐pot synthesis for polythiourethane thermoplastics for tough three‐dimensional (3D) printing applications. The thiol–isocyanate reaction mechanism allows for rapid polymer synthesis with minimal byproduct formation and few limitations on reaction conditions. The resulting elastomer has high toughness and a low melting point, making it favorable for use as a 3D printing filament. The elastomer outperforms commercial filaments in tension when printed. Considering the rapid advancement of additive manufacturing and the limitations of many engineering polymers with the 3D printing process, these results are encouraging for the development of bespoke 3D printing thermoplastics. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45574.  相似文献   

16.
Fused deposition modeling (FDM) filaments made of recycled materials are desirable for environmentally friendly and sustainable manufacturing of prototypes and load-bearing components in many applications. We investigate the effect of FDM process parameters on the mechanical properties of 3D-printed parts made of recycled polyethylene terephthalate (rPET) filaments. Increasing the nozzle temperature from 230°C to 260°C improves the strength of the specimens by 100%. Using a raster orientation parallel to the loading direction improves the ductility by more an order of magnitude. Specimen orientation and infill ratio also influence the mechanical properties. The temperature and the orientation effects are related to the quality of fusion between the printed lines. A modified Gibson-Ashby model correctly predicts the strength as a function of the infill ratio. Through the optimization of process parameters, the mechanical strength of 3D-printed rPET structures can reach that of injection-molded PET, making FDM a suitable manufacturing technique for load-bearing applications.  相似文献   

17.
Thermoset shape‐memory polymers (SMPs) are widely applied because of their superiority in maintaining permanent shapes. However, the inferiority of this material is also conspicuous, namely the loss of reprocessing ability owing to the chemically crosslinked structure. Fortunately, a new class of SMPs, known as “vitrimers,” was discovered, which can be reshaped or reprocessed via topological rearrangement due to the existence of dynamic covalent bonds. Thus, this new thermoset SMP could become a novel solution. In this paper, carbon nanotube–polyurethane vitrimer (CNT‐PUV) composites have been prepared, which possess the capability of thermally induced shape memory based on entropy changes and thermal reconfiguration based on transcarbamoylation reactions of carbamate bonds. In addition, the introduction of CNTs endows them with properties of near‐infrared (NIR) triggered shape memory and reconfiguration due to the photothermal conversion effect of CNTs. Besides, due to the character of the NIR laser, step‐by‐step shape recovery of CNT‐PUVs is realized from predefined temporary shapes to a permanent shape. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45784.  相似文献   

18.
Polyolefins are the largest class of commercially available synthetic polymers that are extensively used in a variety of applications from commodities to engineering owing to their low cost of production, good physico-mechanical properties, light weight, good processability, and recyclability. Compared to conventional molding techniques, fused deposition modeling (FDM)-based 3D printing is a smart manufacturing technology for thermoplastics due to its low cost, ease of production of complex geometrical parts, rapid prototyping, and scalable customization. FDM 3D printing can be an ideal manufacturing technology for polyolefins to manufacture various complex parts. However, FDM 3D-printing of polyolefins is challenged bycritical printing problems like high warpage, dimensional inaccuracies, poor bed adhesion, and poor layer-to-layer adhesion. In this review, a fundamental understanding of polyolefins and their FDM 3D-printing process is established, and the recent progress of FDM 3D printing of polyolefins is summarized. Furthermore, strategies to overcome warpage and to improve mechanical strength of the 3D-printed polyolefins are provided. Finally, future prospectives of FDM 3D-printing of polyolefins are critically discussed to inspire prospective research in this field. It is believed that this review article can be tremendously useful for research work related to FDM of polyolefin-based materials.  相似文献   

19.
Shape-memory polymers (SMPs) are one of the most popular smart materials due to their light weight and high elastic deformation capability. The synergistic effect of carbon nanofiber (CNF) and carbon nanofiber paper (CNFP) on the electro-actuation of SMP nanocomposites was studied. The electrical conductivity of SMPs was significantly improved by incorporating CNF and CNFP into them. The dynamic mechanical analysis result reveals good thermal stability of SMP nanocomposites even after they were mixed with CNFs. A vision-based control system is designed to precisely control the shape recovery of SMP composites. Any quasi-state shape between the permanent shape and a temporary shape can be achieved by adjusting the electrical energy input. Experimental results demonstrated that (1) compared with the baseline material, the full recovery time of the SMP nanocomposites was decreased by 1000% to less than 80 s; (2) a good repeatability was shown in the developed vision system in 10 experimental trials and the accuracy of the controlled deflection angle of SMPs was within a 5% error bound.  相似文献   

20.
Three-dimensionally-printed aortic templates are increasingly being used to aid in the modification of stent grafts in the treatment of urgent, complex aortic disorders, often of an emergency nature. The direct contact between the aortic template and the stent graft implies the necessity of complete sterility. Currently, the efficacy of sterilizing aortic templates and the effect of sterilization on the geometry of tubular aortic models are unknown. A complex case of aortic arch dissection was selected to prepare a 3D-printed aortic arch template, which was then manufactured in six popular printing materials: polylactic acid (PLA), nylon, polypropylene (PP), polyethylene terephthalate glycol (PETG), and a rigid and flexible photopolymer resin using fused deposition modeling (FDM) and stereolithography (SLA). The 3D models were contaminated with Geobacillus stearothermophilus broth and Bacillus atrophaeus. The sterilization was performed using three different methods: heat (105 °C and 121 °C), hydrogen peroxide plasma, and ethylene oxide gas. Before and after sterilization, the aortic templates were scanned using computed tomography to detect any changes in their morphology by comparing the dimensions. All sterilization methods were effective in the elimination of microorganisms. Steam sterilization in an autoclave at 121 °C caused significant deformation of the aortic templates made of PLA, PETG, and PP. The other materials had stable geometries, and changes during mesh comparisons were found to be submillimeter. Similarly, plasma, gas, and heat at 105 °C did not change the shapes of aortic templates observed macroscopically and using mesh analysis. All mean geometry differences were smaller than 0.5 mm. All sterilization protocols tested in our study were equally effective in destroying microorganisms; however, differences occurred in the ability to induce 3D object deformation. Sterilization at high temperatures deformed aortic templates composed of PLA, PETG, and PP. This method was suitable for nylon, flexible, and rigid resin-based models. Importantly, plasma and gas sterilization were appropriate for all tested printing materials, including PLA, PETG, PP, nylon, flexible and rigid resins. Moreover, sterilization of all the printed models using our novel protocol for steam autoclaving at 105 °C was also 100% effective, which could represent a significant advantage for health centers, which can therefore use one of the most popular and cheap methods of medical equipment disinfection for the sterilization of 3D models as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号