首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2020,46(1):317-324
In this study, the influence of swift heavy ions (SHI) [C6+ (80 MeV) and O7+ (100 MeV)] irradiation on microwave (MW) absorbing properties of cobalt ferrite nanoparticles/exfoliated nanographites/poly(methylmethacrylate) (CoFe2O4/NG/PMMA) nanocomposites was investigated in the frequency range of 2–18 GHz. This work is the first attempt to study the comprehensive effects of SHI irradiation on MW absorbing properties of polymer nanocomposites. The scanning electron micrographs of the nanocomposites reveal monotonic improvement in the dispersion of nanofillers (CoFe2O4 and NG) with an increase of irradiation dose. With an increase in the fluence of ions, the room temperature saturation magnetization was observed to decrease monotonically, whereas a reverse trend was detected for the coercivity. The SHI irradiated nanocomposites exhibited a relatively stronger MW absorption as well as a higher effective bandwidth of absorption. A minimum reflection loss (RLmin) of −36.7 dB (99.98% MW absorption) and a broad bandwidth (for RL ≤ −10 dB) of ~7.1 GHz were detected in O7+ (100 MeV) SHI irradiated nanocomposite at the fluence of 1 × 1012 ions/cm2. The results demonstrate that SHI irradiation can used as an effective tool to tailor and enhance the MW absorption in light-weight CoFe2O4/NG/PMMA nanocomposites.  相似文献   

2.
The electromagnetic (EM) wave absorbing properties of Cr2AlB2 powders and those after high-temperature oxidation were investigated. Coupling of magnetic and dielectric loss enables Cr2AlB2 with good absorption properties. The minimum reflection loss (RL) value is −44.9 dB at 8.5 GHz with a thickness of 2.7 mm, and the optimized effective absorption bandwidth (EAB) is 4.4 GHz (13.0-17.4 GHz) with a thickness of 1.6 mm. After oxidation at 750, 900, and 1000°C for 2 h, the minimum RL values, respectively, are −23.9 dB (17.5 GHz, 1.5 mm), −41.4 dB (16.5 GHz, 1.5 mm), and −39.5 dB (8.0 GHz, 3.0 mm); and the corresponding EAB values, respectively, are 3.8 GHz (13.6-17.4 GHz, 1.7 mm), 4.1 GHz (13.5-17.6 GHz, 1.6 mm), and 4.4 GHz (13.0-17.4 GHz, 1.7 mm). With an absorber thickness of 1.5-4.0 mm, the EAB with a RL value of less than −10 dB can be tuned in a broad-frequency range 5.0-18.0 GHz, which basically covers C (4-8 GHz), X (8-12 GHz), and Ku (12-18 GHz) bands. These results demonstrate that Cr2AlB2, as a high-efficient and oxidation-resistant absorber, is a promising candidate for microwave absorption applications and can retain good EM wave absorbing properties after high-temperature oxidation.  相似文献   

3.
The microwave absorbers, which can attenuate and dissipate the incident electromagnetic wave, have attracted much more attentions due to their great potential applications in military stealth and civil healthcare. In this study, the three-dimensional (3D) architecture absorber of multiwalled carbon nanotubes@polystyrene (MWNTs@PS) was designed and synthesized by the combination of PS microspheres with MWNTs via self-assembly of electrostatic adsorption. The morphology and dispersity of absorbers were characterized via scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The aim of this study is to explore the influence of the 3D architecture of absorbers on the enhanced absorbing performance of MWNTs. The results of SEM and TEM demonstrated that 3D architecture constructed via MWNTs attaching on the surface of PS microspheres were established, which is in favor for MWNTs to build more electron transportation pathways and enhance the multiinterface polarization. Compared with one-dimensional (1D) absorbers of PS/MWNTs, the 3D MWNTs@PS exhibited excellent absorbing properties, the maximum reflection loss (RL) was −34.2 dB at 10.6 GHz with a thickness of 2.00 mm and the frequency bandwidth of RL below −10 dB (90% absorption) was 3.0 GHz. In contrast, the maximum RL of 1D PS/MWNTs and pristine MWNTs were −19.1 dB at 11.5 GHz and −7.7 dB at 8.8 GHz, respectively. The results implied that the construction of 3D architecture has crucial influence on the enhanced absorbing performance of MWNTs. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47566.  相似文献   

4.
Low‐power plasma‐sprayed Cr/Al2O3 coatings have been developed for their potential application as broad bandwidth, thin thickness, lightweight, and strong microwave‐absorbing materials. The dielectric and microwave absorption properties of the as‐sprayed coatings were studied in the X‐band (from 8.2 to 12.4 GHz). High complex permittivity of the coatings was obtained because of a large number of internal boundaries and the conductive networks. Meanwhile, a significant enhancement of microwave absorption properties of the coating was achieved due to the enhanced interfacial polarization and conductance loss. The reflection loss (RL) <?10 dB of the Al2O3–15Cr coating was obtained from 9.8 to 11.4 GHz by choosing an appropriate coating thickness, and an optimal minimum reflection loss (RLmin) of ?45.35 dB was achieved at 10.3 GHz with a thin thickness of 1.32 mm.  相似文献   

5.
《Ceramics International》2020,46(5):6168-6173
Microwave absorbing materials (MAM) which can be used in high temperature and oxidation environments are strongly demanded in application, for conventional MAM fail due to various factors at high temperature. In this work, ceramic coatings composed of La0.6Sr0.4FeO3-δ and MgAl2O4 have been successfully prepared via atmospheric plasma spraying and the microwave absorbing properties at high temperature are first reported. When the coatings of LSF/MAS matched with the metal substrate on thermal expansion, they can be treated repeatedly in the temperature range of 300 K–1173 K without peeling off. Meantime, the ceramic coatings with thickness of 1.5 mm showed considerable microwave absorption in the range of 8 GHz–18 GHz at high temperatures between 673 K–1173 K. The absorption bandwidth of LSF30 was 3.5 GHz for RL < −10 dB and 8 GHz for RL < −5 dB in the temperature range of 673 K–1173 K. LSF/MAS possesses the advantages of thin thickness and broad bandwidth at high temperatures, suggesting great potential as MAM in ultra-temperature environment.  相似文献   

6.
Aluminum‐doped strontium hexaferrite nanoparticle SrAl1.3Fe10.7O19 was prepared by sol–gel method and polyaniline (PANi) multiphase magnetic nanocomposite SrAl1.3Fe10.7O19/MWCNT/PANi was synthesized through a sonochemical method by in situ polymerization. The morphology, structure, and magnetic properties of the nanocomposites are investigated by field emission scanning electron microscopy, X‐ray powder diffraction, Fourier transform infrared spectroscopy, and vibrating sample magnetometer. The electromagnetic interference shielding efficiency was evaluated in the KU‐band (12.4–18 GHz). The reflection loss (RL) value showed that the composites have an excellent absorbing property in the KU‐band, minimum ?24.93 dB at 16.40 GHz with a bandwidth of 2.81 GHz (shielding effectiveness up to 10 dB) at a matching thickness 6.5 mm. The RL value of the SrAl1.3Fe10.7O19/MWCNT nanocomposite was ?15.92 dB at 15.84 GHz with a bandwidth of 1.66 GHz (with a shielding effectiveness up to 10 dB). These results disclose the remarkable microwave shielding ability of SrAl1.3Fe10.7O19/MWCNT/PANi in KU‐band due to the interactive effect of the three components. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45135.  相似文献   

7.
In this work, α-MnO2 nanorods-polyaniline nanocomposites were synthesized using polymer coating and grafting approaches. The synthesized nanocomposites were characterized by XRD, FESEM, EDAX, TEM, TG-DTA and FT-IR techniques. The Electromagnetic properties of prepared samples were measured using vector network analyzer in the 8–18 GHz (X and Ku-Band) frequency region. The α-MnO2-NH2-PANI nanocomposite synthesized by grafting approach showed better electrical conductivity, excellent dielectric loss with superior microwave absorption ability. In comparison with pure MnO2, the microwave absorption characteristics of α-MnO2-NH2-PANI nanocomposite display considerable improvements, with an effective absorption band at 10.8 GHz and 14.5 GHz under ?10 dB and minimum reflection loss (RL) of ?30.79 dB at 14.5 GHz. The α-MnO2-NH2-PANI sample also showed considerable shielding effectiveness (SE) i.e. ?20.85 dB in the 8–18 GHz frequency region. The observed value of RL and SE surpasses the required value for being utilized at a commercial level. These results are surely helpful to explore the microwave absorption study of different combinations of organic/inorganic nanocomposite materials particularly for shielding and microwave absorption applications.  相似文献   

8.
Demand for high-performance electromagnetic (EM) wave absorbing materials with high-temperature resistance is always urgent for application in a harsh environment. In this contribution, two-dimensional material, Ti3C2Tx MXene, was introduced into a hyperbranched polyborosilazane. After pyrolyzation, the as-prepared TiC/SiBCN ceramics present excellent EM wave absorption in X-band. The TiC nanograins appearing after annealing provide multilevel reflection and interface polarization. Dipole polarization formed at interface defects, in company with interfacial polarization, also makes a great contribution to enhanced EM wave absorption. The TiC/SiBCN nanocomplex prepared with 5 wt% Ti3C2Tx MXene possesses a minimum reflection coefficient of −45.44 dB at 10.93 GHz and abroad bandwidth 8.4 and 12.4 GHz, almost covering the entire X-band. Tuning the thickness in the range of 2.35-2.54 mm, the effective absorption band can achieve the entire X-band. And the EM wave absorbing performance has been maintained to a large extent at 600°C with the minimum reflection coefficient of −26.12 dB at 12.13 GHz and the effective absorption bandwidth of 2 GHz. Last but not the least, TiC/SiBCN ceramics offer a good thermal stability in argon as well as in air atmosphere, making it possible to serve in high-temperature detrimental environments. This study is expected to provide a new perspective for the design of high-performance absorbing materials that are able to be used in harsh environments, especially in high temperatures.  相似文献   

9.
In this study, coral cauliflower-like polypyrrole (PPy) hemispheres are synthesized on an alumina substrate via a simple chemical oxidative polymerization route. The stony coral-like morphology of PPy hemispheres acts as a conducting trap in absorbing electromagnetic (EM) radiation via multiple internal reflections. A PPy thin film deposited at 0.2 M pyrrole concentration shows a minimum reflection loss (RL) of −30.80 dB (99.9% microwave absorption) at the frequency of 14.2 GHz, and the highest total shielding effectiveness achieved is −18.3 dB at 16.8 GHz at 4.38 μm film thickness. The thin films exhibit excellent microwave absorption ability at low thicknesses, and the effective absorption bandwidth (RL < –10 dB) attains a high value of 2.2 GHz in the frequency range of 13–15.2 GHz. These findings can help researchers to enhance the EM wave absorption characteristics in a broad frequency region using lightweight intrinsically conducting polymers.  相似文献   

10.
《Ceramics International》2020,46(4):4329-4334
The increasing electromagnetic interference problems have drawn much attention to microwave absorbing materials. To satisfy the needs of practical application, FeSiAl and flaky graphite filled Al2O3 composites were sintered by hot-pressing for microwave absorption application. The effect of FeSiAl particle size on the electromagnetic and microwave absorption properties was investigated in the X-band (8.2–12.4 GHz). The results show that the dielectric properties enhance significantly with increasing FeSiAl particle size, which is attributed to the increased interfacial polarization and conductance loss. As a result of the favorable impedance matching and appropriate electromagnetic attenuation, the reflection loss (RL) of the composites filled with 25–48 μm flaky FeSiAl achieves -15.2 dB at 10.6 GHz and the effective absorption bandwidth (RL < -10 dB) is 1.2 GHz in 10.0–11.2 GHz with a matching thickness of 1.0 mm. It indicates that FeSiAl and flaky graphite filled Al2O3 composites are potential candidates for thin-thickness microwave absorbing materials, and the microwave absorption properties can be enhanced by adjusting absorbent particle size.  相似文献   

11.
For wider-band and stronger electromagnetic (EM) wave absorption, macroporous short carbon fibers/mullite matrix (Cf/Mu) composites were prepared via introducing short carbon fibers (0, 0.7, and 1.3 vol%) with length of 2-3 mm into macroporous mullite ceramic by gel-casting. The density of as-prepared Cf/Mu composites decreases from 2.93 g/cm3 to 2.74 g/cm3, while the porosity increases from 3.32% to 10.76% with the rise in carbon fibers content. The diameter of macropores in Cf/Mu composites is ranging from several microns to tens of microns. Complex permittivity and dielectric loss of the prepared composites in X-band (8.2-12.4 GHz) are significantly enhanced with increased carbon fibers content. The best EM wave absorption performance is obtained in the macroporous Cf/Mu composites containing only 0.7 vol% carbon fibers (Cf/Mu-0.7). The maximum absorption loss of Cf/Mu-0.7 is −38.3 dB at 12.08 GHz at the thickness of 2.1 mm, and effective absorption bandwidth below −10 dB (over 90% of EM wave absorption) covers the whole X band with the thickness of 2.35 mm. The results suggest that the Cf/Mu composites can be promising high-performance EM wave absorbing materials.  相似文献   

12.
A series of short-carbon-fiber/Al2O3 composites with MgO as sintering additive were fabricated by pressureless sintering process. The effects of short carbon fiber (Csf) content on the mechanical, dielectric and microwave absorbing properties of the composite were investigated. The results show that the addition of MgO enhances the density, hardness and the flexural strength of the alumina ceramic. However, these mechanical properties of the Csf/Al2O3–MgO composite decrease with increasing Csf content. Both the real and imaginary parts of the complex permittivity increase with increasing Csf content in the frequency range of 8.2–12.4 GHz, which is attributed to the increasing electron polarization and associated polarization relaxation, respectively. When the Csf content is 0.3 wt%, the reflection loss less than −10 dB and the minimum value of −27 dB are obtained with the coating thickness being 1.4 mm. The results indicate that the Csf/Al2O3 with MgO is an excellent candidate for microwave absorbing material with favorable mechanical property.  相似文献   

13.
The Si-O-C ceramics were prepared by polymer-derived ceramic method using polysiloxane/FeCl3 as precursor with the FeCl3 content of 1.0 wt%. The microstructure, dielectric properties, and electromagnetic wave (EMW) absorbing properties in X band of the Si-O-C ceramic were investigated. It was found that the pyrolysis temperature has a great influence on the amount of in-situ formed CNTs and the transformation from CNTs to 1D SiC nanostructures. With the temperature rising from 1000 to 1500°C, the SiC formed with various morphologies including SiC microspheres, needle-like SiC, and SiC nanowires which were transformed from CNTs. The EMW absorbing properties were dramatically improved when the pyrolysis temperature raised to 1500°C; the minimum reflection loss (RL) was −58.37 dB of sample with a thickness of 2.95 mm at 10.11 GHz, and the absorbing band (RL ≤−20 dB) of sample at a thickness of 3.0 mm covers 3.8 GHz (8.2-12.0 GHz), which means more than 99% of the EMW were absorbed. The enhancement of EMW absorbing properties of bulk Si-O-C ceramics was attributed to the interfacial polarization induced by in-situ heterogeneous nanostructures with complex interfaces.  相似文献   

14.
Dielectric properties and electromagnetic (EM) wave absorbing performance of monolithic (SiC/HfC/C)/SiO2 nanocomposites (denoted as SHCOs) have been investigated in the X-band (8.2–12.4 GHz). The multiphase SHCOs are composed of insulating SiO2 and SiC/HfC/C nanocomposite fillers (SHC), which fillers composed of semiconducting β-SiC, conductive HfC-Carbon core-shell nanoparticles, and interconnected carbon nanoribbons. Dielectric response indicates that the increased SHC content results in an enhanced imaginary part of the permittivity and dielectric loss, leading to an improved EM absorbing performance. The unique microstructure with an EM wave-transparent SiO2 matrix is favorable for impedance matching and effective EM wave propagation. The enhanced interface polarization and conduction loss are considered as the key mechanisms for EM wave attenuation. The minimum reflection loss of the SHCOs achieves – 60.7 dB containing 20 vol% of SHC (at 9.98 GHz) with the sample thickness of 3.33 mm, and the effective absorbing bandwidth (EAB) covers ca. 72 % of the X-band. The monolithic (SiC/HfC/C)/SiO2 nanocomposites with outstanding EM wave absorbing performance are promising candidates for EM application at high temperatures.  相似文献   

15.
《Ceramics International》2022,48(17):25111-25119
Electromagnetic wave (EMW) absorbing materials have been widely applied in the fields of military and engineering areas. It is of great significance to develop high-performance EMW absorbing materials. This work assembled the sandwich-like Ti3C2Tx based nanocomposites by the microwave-assisted annealing of CoFe-MOF@Ti3C2Tx (CFMF@Ti3C2Tx) precursors at different temperatures. Results show that, as the heat treatment temperature is 450 °C, the sandwich-like Ti3C2Tx@CoFe@TiO2 nanocomposites present better EMW absorption properties. The minimum reflection loss (RL) value was ?62.9 dB at 17.95 GHz with a thin thickness of 1.2 mm. Moreover, the effective absorption bandwidth (EAB) value was 5.02 GHz (12.74–17.76 GHz) with a thickness of 1.4 mm. The application of microwave-assisted annealing contributed to the formation of CoFe nanoparticles and TiO2 nanoparticles because of the ultra-fast heating rate. The introduction of the nanoparticles enhanced the multiple polarization, optimized the impedance matching and introduced magnetic loss, leading to the improvement of EMW absorption. When the annealing temperature further increased to 550 °C, the EMW absorbing performance was weakened, which was mainly correlated with the decrement of the interface area due to the increase of the TiO2 nanoparticle size and CoFe nanoparticle size. Thus, the loss effect of the multiple interface polarization weakens in the EMW absorption. In addition, the high permittivity of Ti3C2Tx disappears, which deteriorated the impedance matching and attenuation ability of EMW. Ultimately, sandwich-like Ti3C2Tx@CoFe@TiO2 nanocomposite with satisfactory EMW absorbing properties is established, promising for various EMW absorbing applications.  相似文献   

16.
《Ceramics International》2017,43(12):8603-8610
Porous CxNy nanofibers are controllably synthesized by a simple two-step method. The prepared samples possess uniform micropores and a chemical composition of C0.73 N0.27 with a surface area of 329 m2 g−1. The obtained CxNy nanofibers exhibit remarkable electromagnetic (EM) wave absorption properties when compared with conventional one-dimensional carbon materials. The minimum reflection loss (RL) reaches −36 dB at 2.7 GHz when the ratio of the CxNy absorbent added in paraffin matrix is only 1:3. The bandwidth of the RL below −10 dB covers 7.7 GHz (8.1–15.8 GHz) at the sample thickness of 2.5 mm. A possible EM wave loss mechanism was proposed in detail. The multiple reflection and dielectric loss could govern the excellent EM absorption leading the product to a probable application in stealth materials.  相似文献   

17.
《Ceramics International》2023,49(20):32458-32469
Absorbers at microwave frequencies with multiple frequency-band response are particularly important for use in military for stealth technology. Specially, ferrite based absorbing materials are significant for electromagnetic shielding and signal attenuation. The enhancement of reflection loss of ferrites along with carbonaceous materials are even more beneficial. Recently double-layer absorbers have extensively studied to meet the requirements of advanced absorbing materials in multiple frequency-band response. It still remains a challenge how to determine the type and thickness to couple the impedance-matching-layer to the absorption-layers for a double-layer absorber. We applied hydrothermal method to prepare Fe3O4 nanoparticle and combine them with either graphene oxide (GO) or reduced graphene oxide (rGO) to prepare a composite of specific quality to obtain Fe3O4@GO and Fe3O4@rGO nanocomposite. We studied microwave attenuation capabilities of single and double-layer absorbers containing these two materials. We have demonstrated that with a thin impedance matching layer as a first layer and an absorbing layer behind this layer for the double-layered absorber has much higher reflection loss (RL) than a single-layer. The Fe3O4@rGO composite as a single-layer absorber shows the best microwave absorption performance with RL close to −30 dB in all three microwave bands (X, Ku and K bands). The use of a double-layer structure as Fe3O4@GO as impedance matching layer and Fe3O4@rGO as absorbing layer exhibits the best absorption of −50 dB. This is much larger than the single-layered absorbers at all three frequency-bands. Such a performance is superior to many reported ferrite-based carbonaceous composites. Therefore, a double-layer absorber is best suited to coat the whole body of the aircraft or missiles to evade satellite detection, a preparation towards new-generation weapons for future warfare. Before performing the absorption studies we have characterized the ferrites, GO and rGO materials with various microstructural and magnetic characterizations.  相似文献   

18.
Novel SiC-based nanomaterials, namely the nitrogen and aluminum co-doped SiC@SiO2 core-shell nanowires and nitrogen-doped SiO2/Al2O3 nanoparticles, have been fabricated through a facile thermal treatment process based on the chemical vapor deposition and vapor-liquid reaction. These nanomaterials show remarkable hydrophobicity with a water contact angle (CA) over 140°, which are aroused by the surface zigzag morphology of the nanostructures and the hydrocarbyl groups generated during the preparation process. Moreover the nanocomposites also exhibit relatively prominent microwave absorption (MA) properties in the frequency range of 2.0-18.0 GHz. The minimum reflection loss (RL) value as low as −23.68 dB can be observed at 14.16 GHz when the absorber thickness is 2.6 mm with a loading rate of 16.7 wt%. And the nanocomposites-based absorbent can achieve an effective absorption bandwidth (RL < −10 dB) of 4.48 GHz with the absorbent thickness of 2.5 mm. This enhanced microwave attenuation performance can be attributed to multiple polarizations and perfect impedance matching conditions, as well as multiple internal reflections. These marvelous properties make these N and Al co-doped SiC@SiO2 core-shell nanowires and N-doped SiO2/Al2O3 nanoparticles display extensive application potential as MA materials in harsh environment.  相似文献   

19.
Carbon black (CB) with contents of 5.5?wt% and 15?wt% filled quartz glass fiber reinforced polyimide (SiO2f/PI) composite were designed and prepared. A double-layer absorbing material was designed using the two composites materials as a matching layer and an absorption layer, respectively. The microwave absorption property of single-layer and double-layer composites is calculated according to transmission line theory. The results show that the microwave absorbing property of double-layer composite is better than that of single-layer at the same thickness. When the 5.5?wt%CB doped SiO2f/PI composite is used as the matching layer with a thickness of 0.7?mm and 15?wt%CB doped SiO2f/PI composite is used as the absorption layer with a thickness of 0.9?mm, the RL (reflection loss) of the composite reaches a minimum value of ?46.18?dB at 16.07?GHz. Meanwhile, the bandwidth of RL?≤??5?dB is 5.87?GHz and the bandwidth of RL?≤??10?dB is 3.95?GHz.  相似文献   

20.
Because of outstanding performances of the SiC fiber-reinforced ceramic matrix composites in aircraft/aerospace systems, two silicon carbide fiber-reinforced oxide matrices (SiCf/oxides) composites have been prepared by a precursor infiltration and sintering method. Results indicate that the flexural strength of the SiCf/Al2O3–SiO2 composite reaches 159 MPa, whereas that of the SiCf/Al2O3 composite is only 50 MPa. The high-temperature microwave absorption properties of the composite are significantly enhanced due to choosing Al2O3 and SiO2 as the hybrid matrices. Particularly, the minimum reflection loss (RL) value of the SiCf/Al2O3–SiO2 composite reaches −37 dB in the temperature of 200 °C at 8.6 GHz, and the effective absorption bandwidth (RL ≤ −5 dB) is 4.2 GHz (8.2–12.4 GHz) below 400 °C. The superior microwave absorption properties at high temperatures indicate that the SiCf/Al2O3–SiO2 composite has promising applications in civil and military areas. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47097.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号