首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Recently, the application of metal oxides such as Fe3O4 nanoparticles have wide interest for environmental remediation and treatment of wastewater especially contaminated with azo dyes owing to its high degradation efficacy and low toxicity. The recovery of magnetic catalysts without losing their efficiency is an essential feature in the catalytic applications. The aim of this article is to investigate and synthesis of magnetically retrievable Fe3O4/polyvinylpyrrolidone/polystyrene (Fe3O4/PVP/PS) nanocomposite for the catalytic degradation of azo dye acid red 18 (AR18). Fe3O4/PVP/PS nanocomposite was prepared in two steps. Firstly, PVP/PS microsphere was synthesized by γ-irradiation polymerization of styrene in presence of PVP solution. Secondly, deposition of Fe3O4 nanoparticles on PVP/PS microsphere was achieved by the alkaline co-precipitation of Fe3+/Fe2+ ions. The chemical structural and morphological properties of PVP/PS microsphere and Fe3O4/PVP/PS nanocomposite were examined by XRD, TEM, DLS, FTIR, EDX and VSM techniques. TEM results showed homogeneous morphology, spherical shaped and well-dispersed Fe3O4 nanoparticles with average particle size of 26 nm around PVP/PS microspheres. The VSM measurements of Fe3O4/PVP/PS nanocomposite exhibit excellent magnetic response of saturation magnetization 26.38 emu/g which is suitable in magnetic separation. The effect of the synthesized Fe3O4/PVP/PS nanocomposite on the catalytic degradation of AR18 in presence of hydrogen peroxide (H2O2) as a heterogeneous Fenton-like catalyst was examined. The catalyst Fe3O4/PVP/PS/H2O2 played basic role in promoting the oxidation degradation efficiency of AR18 of initial concentration 50 mg/L to 94.4% in 45 min with excellent recyclability till the sixth cycles under the best conditions of pH 3, 2% v/v H2O2 and 0.3 g catalyst amount. Furthermore, the Fe3O4/PVP/PS/H2O2 hybrid catalyst system supports high capability for oxidation degradation of mixture of different dyes. The Fe3O4/PVP/PS nanocomposite catalyst had high magnetic and recyclability characters which are acceptable for the treatment of wastewater contaminated by various dyes pollutants.

  相似文献   

2.
In this study, polymer‐grafted magnetic nanoparticles containing chromium(III) ions incorporated onto Fe3O4/mercaptopropanoic acid‐poly(2‐hydroxyethyl acrylate) was prepared via a simple and in situ method. The obtained magnetic nanocomposite exhibited high catalytic activity and excellent selectivity in direct hydroxylation of benzene in the presence of hydrogen peroxide under solvent‐free condition. The magnetic catalyst could be also separated by an external magnet and reused seven times without any significant loss of activity/selectivity. Due to the Lewis acidity of the Fe3+ groups in the structure of magnetic nanoparticles, the high efficiency of this catalyst is possibly due to the synergetic effect of Cr3+ and Fe3+ groups in the structure of magnetic nanocomposite. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40383.  相似文献   

3.
Cellulose nanocomposites containing high contents of Fe3O4 nanoparticles were successfully prepared with regenerated cellulose films as a matrix and mixture solutions of Fe2+/Fe3+ as precursors. The structure and properties of the magnetic nanocomposite films were investigated with X‐ray diffraction, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, and vibrating sample magnetometry. Fe3O4 nanoparticles as prepared were irregular spheres and were homogeneously dispersed in the cellulose matrix. With an increase in the concentration of precursors from 0.2 to 1.0 mol/L, the content of Fe3O4 nanoparticles in the dried nanocomposites increased from 12 to 39 wt %, and the particle diameter increased from 32 to 64 nm. The cellulose nanocomposite films demonstrated superparamagnetic behavior, and their saturation magnetizations were in the range 4.2–21.2 emu/g, which were related to the increase in Fe3O4 nanoparticle content. With increasing nanophase content, the nanocomposite films displayed significantly anisotropic magnetic properties in the parallel and perpendicular directions. This study provided a green and facile method for the preparation of biobased nanocomposite films with high nanophase content and excellent magnetic properties. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
In this paper, Fe3O4 nanoparticles were coated by a number of amino acids, e.g. cysteine, serine, glycine and β-alanine, via a simple method. Because of the surface modification of the magnetic nanoparticles with amino acid, the obtained magnetic nanocomposite is able to trap palladium nanoparticles through a strong interaction between the metal nanoparticles and the functional groups of amino acids. Among the synthesized nanocomposites, Fe3O4/cysteine-Pd exhibited the highest catalytic performance and excellent selectivity in the solvent-free aerobic oxidation of various alcohols, along with high level of reusability.  相似文献   

5.
Multifunctional materials have received considerable attention as they could integrate different functional components in one-single platform. In this study, novel chitosan/Fe3O4/TiO2@TiO2 nanowire (NW) microspheres having extracellular matrix-like fibrous surface and photothermal antibacterial property were synthesized through in situ hydrothermal growth of TiO2 NWs on chitosan/Fe3O4/TiO2 microspheres. It is found that the microspheres were spherical in morphology with a diameter of 100–300 µm and exhibited a hierarchical and nanofibrous feature. Their surface was mainly constructed by numerous TiO2 NWs with a diameter of 20– 30nm. In vitro biological evaluation indicates that the chitosan/Fe3O4/TiO2@TiO2 NW microspheres significantly enhanced attachment and proliferation of human umbilical vein endothelial cells compared with chitosan/Fe3O4/TiO2 nanocomposite microspheres due to the presence of nanofibrous surface. Moreover, the microspheres showed photothermal antibacterial property to inhibit the growth of bacteria due to the presence of Fe3O4 component.  相似文献   

6.
A magnetically separable Fe3O4–NH2–Pd (0) catalyst was easily synthesized by immobilizing Pd nanoparticles on the surface of magnetic Fe3O4–NH2 microspheres. It was found that the combination of Fe3O4 and triethylene tetramine (TETA) could give rise to structurally stable catalytic sites. Furthermore, the high-magnetization Fe3O4–NH2–Pd(0) catalyst can be recovered by magnet and reused for six runs for Heck reaction without significant loss in catalytic activity.  相似文献   

7.
Pickering suspension polymerization was used to prepare magnetic polymer microspheres that have polymer cores enveloped by shells of magnetic nanoparticles. Styrene was emulsified in an aqueous dispersion of Fe3O4 nanoparticles using a high shear. The resultant Pickering oil-in-water (o/w) emulsion stabilized solely by magnetic nanoparticles was easily polymerized at 70 °C without stirring. Fe3O4 nanoparticles act as effective stabilizers during polymerization and as building blocks for creating the organic–inorganic hybrid nanocomposite after polymerization. The fabricated magnetic nanocomposites were characterized by FTIR, XRD, TGA, DSC, GPC, XPS and SEM. The structures of the polymer core and the nanoparticle shell were analyzed. We investigated the effects on the products of the weight of Fe3O4 nanoparticles used to stabilize the original Pickering emulsions. Pickering suspension polymerization provides a new route for the synthesis of a variety of hybrid nanocomposite microspheres with supracolloidal structures.  相似文献   

8.
Hollow polyaniline/Fe3O4 microsphere composites with electromagnetic properties were successfully prepared by decorating the surface of hollow polyaniline/sulfonated polystyrene microspheres with various amounts of Fe3O4 magnetic nanoparticles using sulfonated polystyrene (SPS) as hard templates and then removing the templates with tetrahydrofuran (THF). The synthesized hollow microsphere composites were characterized by FT-IR, UV/Vis spectrophotometry, SEM, XRD, elemental analysis, TGA, and measurement of their magnetic parameters. Experimental results indicated that the microspheres were well-defined in size (1.50–1.80 μm) and shape, and that they were superparamagnetic with maximum saturation magnetization values of 3.88 emu/g with a 12.37 wt% content of Fe3O4 magnetic nanoparticles. Measurements of the electromagnetic parameters of the samples showed that the maximum bandwidth was 8.0 GHz over ?10 dB of reflection loss in the 2–18 GHz range when the Fe3O4 content in the hollow polyaniline/Fe3O4 microsphere composites was 7.33 wt%.  相似文献   

9.
In this paper, we attempted to synthesize a hybrid nanostructure by the incorporation of Au nanoparticles (NPs) with polymer-coated Fe3O4 microspheres. Also, Au NPs on 3-aminopropyl triethylsilane (APTS)-modified Fe3O4@SiO2 and Fe3O4@polymer microspheres were synthesized to assess the catalytic activity of Au NPs on Fe3O4@polymer microspheres for the reduction of 4-nitrophenol. It was found that Au NPs on Fe3O4@polymer catalysts showed higher catalytic activity and recyclability than other APTS-modified catalysts.  相似文献   

10.
《Ceramics International》2022,48(14):20266-20274
Magnetic Fe3O4 has interesting characteristics such as large surface area, low toxicity, ferromagnetic, and biocompatible. The presence of magnetic properties in Fe3O4 provides an advantage in its application as a heterogeneous catalyst. This study highlights the synthesis of Fe3O4 modified chitosan composite and evaluates the catalytic ability in multicomponent Knoevenagel-Michael domino reaction. The synthesis and characterization of pristine Fe3O4 and Fe3O4@Chi samples were investigated. The XRD analysis combined with refinement technique indicates that the pristine Fe3O4 crystallized in a cubic structure with Fd-3mz symmetry and the presence of chitosan in Fe3O4 sample did not change its structure. The FTIR analysis also demonstrated the binding of chitosan to the Fe3O4 nanoparticles. TEM image reveals the presence of chitosan in the composite sample formed a core-shell interaction and covered the surface of Fe3O4 nanoparticles. The evaluation of Fe3O4@Chi catalytic ability in multicomponent Knoevenagel-Michael domino reaction demonstrated reliable catalyst performance with a yield of 92.3% at optimum conditions. Fe3O4@Chi could be classified as a green catalyst because it can be used repeatedly with high yield and easy separation.  相似文献   

11.
Micrometer-sized dual nanocomposite polymer microspheres with tunable pore structures were fabricated using a simple and straightforward method based on Pickering double emulsions. First, a primary water-in-styrene (oil) emulsion (w1/o) was prepared using the hydrophobic silica nanoparticles as a particulate emulsifier without any molecular surfactants. Then, a water-in-styrene-in-water (w1/o/w2) Pickering emulsion was produced by the emulsification of the primary w1/o emulsion into water using Fe3O4 nanoparticles as external emulsifier. The big styrene droplets containing small water droplets were polymerized after the formation of the double emulsions. Nanocomposite polystyrene microspheres with a multihollow structure were obtained and their morphological structures were studied by scanning electron microscopy (SEM). The pore structure of the microspheres could be tuned by the volume ratio of the internal water phase to the medium oil phase (w1:o) of the primary emulsions. With increasing w1:o from 1:8 to 4:1, the amount of the pores in one microsphere increased gradually and the pore structures changed from close to interconnected. The resulting multihollow microspheres had a responsive ability to magnetic stimulus due to the existence of Fe3O4 nanoparticles. This kind of multihollow hybrid polymer microspheres is expected to have a wide potential application in materials science and biotechnology.  相似文献   

12.
The aim of this present work is to investigate the adsorption capacity, kinetics and mechanism of arsenite ion removal onto beta-Cyclodextrin–Chitosan–Fe3O4 nanocomposite (β-CD–CS–Fe3O4 nanocomposite) from aqueous solutions. Iron oxide nanoparticles (Fe3O4) were synthesized using the co-precipitation method and the nanocomposite was successfully prepared via the solution-blending method. The analysis to determine arsenite ion adsorption was carried out using ICP-MS by varying pH, contact time and arsenite concentration parameters. The sorption of arsenite was found to be dependent on pH, time and arsenite initial concentrations. The adsorption equilibrium was reached in the first 20 min with the maximum uptake of 96%. Adsorption data were fitted well to the Langmuir isotherm describing a monolayer adsorption mechanism and pseudo-second-order models for kinetic study. It was established that the β-CD–CS polymer blend grafted with Fe3O4 nanoparticles enhanced the adsorption capacity because of the complexation abilities of the multiple OH and NH2 groups in the polymer backbone with metal ions. Subsequently, the mechanism of adsorption was investigated by studying the physicochemical properties of the adsorbent and the adsorbed species using the FTIR, TGA, DSC, XRD, SEM and TEM techniques. The characterizations before and after incorporations of the β-CD–CS composite with Fe3O4 nanoparticles showed well-improved properties for better adsorption of arsenite (As(III)) ions.  相似文献   

13.
A high surface, magnetic Fe3O4@mesoporouspolyaniline core‐shell nanocomposite was synthesized from magnetic iron oxide (Fe3O4) nanoparticles and mesoporouspolyaniline (mPANI). The novel porous magnetic Fe3O4 was obtained by solvothermal method under sealed pressure reactor at high temperature to achieve high surface area. The mesoporouspolyaniline shell was synthesized by in situ surface polymerization onto porous magnetic Fe3O4 in the presence of polyvinylpyrrolidone (PVP) and sodium dodecylbenzenesulfonate (SDBS), as a linker and structure‐directing agent, through ‘blackberry nanostructures’ assembly. The material composition, stoichiometric ratio and reaction conditions play vital roles in the synthesis of these nanostructures as confirmed by variety of characterization techniques. The role of the mesoporouspolyaniline shell is to stabilize the porous magnetic Fe3O4 nanoparticles, and provide direct access to the core Fe3O4 nanoparticles. The catalytic activity of magnetic Fe3O4@mesoporousPANI nanocomposite was evaluated in the cross‐coupling of aryl chlorides and phenols.  相似文献   

14.
A new method for the fabrication of an electromagnetic nanocomposite based on Fe3O4 and polyaniline (PANI) is offered. The authors focused on improvement of the physical and electromagnetic properties of the nanocomposite using a new synthetic method. Supermagnetic Fe3O4 nanoparticles were synthesized through coprecipitation method. As a chemical modification, the third generation of poly (amidoamine) dendrimer was grafted on the surface of the nanoparticles. PANI was grafted from –NH2 functional groups of dendrimer via in situ polymerization of aniline. Finally, Au nanoparticles were loaded on the nanocomposite and its catalytic activity for reduction reactions was studied.  相似文献   

15.
Fe3O4-graphene nanocomposite was prepared by a gas/liquid interface reaction. The structure and morphology of the Fe3O4-graphene nanocomposite were characterized by X-ray diffraction, scanning electron microscopy and high-resolution transmission electron microscopy. The electrochemical performances were evaluated in coin-type cells. Electrochemical tests show that the Fe3O4-22.7 wt.% graphene nanocomposite exhibits much higher capacity retention with a large reversible specific capacity of 1048 mAh g−1 (99% of the initial reversible specific capacity) at the 90th cycle in comparison with that of the bare Fe3O4 nanoparticles (only 226 mAh g−1 at the 34th cycle). The enhanced cycling performance can be attributed to the facts that the graphene sheets distributed between the Fe3O4 nanoparticles can prevent the aggregation of the Fe3O4 nanoparticles, and the Fe3O4-graphene nanocomposite can provide buffering spaces against the volume changes of Fe3O4 nanoparticles during electrochemical cycling.  相似文献   

16.
Forward osmosis (FO) is a natural osmosis process that has attracted a significant attention due to its many advantages. However, the development of FO process depends on the development of proper draw solutions. In this work, chitosan (CS)-coated Fe3O4 nanoparticles and dehydroascorbic acid (DHAA)-coated Fe3O4 nanoparticles were successfully synthesized by co-precipitation method and their performance as draw solutes was investigated for application in FO systems. CS and DHAA could improve the surface hydrophilicity of the Fe3O4 nanoparticles. The synthesized nanoparticles were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR) and vibrating sample magnetometry (VSM) which the results presented a small size, crystalline morphology and high magnetization value for their structure as well as a good dispersion in water. Cellulose triacetate/cellulose acetate (CTA/CA)-based membranes were also prepared by immersion precipitation and used as FO membranes. The synthesized FO membranes were characterized by FESEM. The performance evaluation of synthesized nanoparticles revealed that the water flux of Fe3O4 nanoparticles capped with DHAA was higher than that of the chitosan-coated Fe3O4 nanoparticles. At the end of the process, the Fe3O4 nanoparticles were easily separated from the diluted draw solution by applying the magnetic field.  相似文献   

17.
The heavy metal ions and organic pollutants are major harmful substances in wastewater because of their toxicity on human health and environment. Nowadays, the adsorption–catalysis treatment to remove them simultaneously is still a challenge because of their different reaction mechanisms. Herein, a novel bifunctional polymer magnetic material Fe3O4@PDA-PEI was successfully developed through a facile co-deposition method by the copolymerization modification of polydopamine (PDA) and polyethyleneimine (PEI) on magnetic ferroferric oxide, which can both be utilized for both heavy metal ion removal from simulated industrial wastewater and further effective catalytic reduction of toxic 4-nitrophenol (4-NP) to useful 4-aminophenol. The maximum adsorption capacity of Fe3O4@PDA-PEI for gold ions was 465.12 mg/g at 35°C, and the adsorption thermodynamic parameters ΔG, ΔH, and ΔS of Fe3O4@PDA-PEI (m(PDA):m(PEI) = 2:1) were −5.28 (35°C), 25.58, and 111.30 J K−1 mol−1, respectively. In addition, a sustainable strategy of converting gold ions to gold nanoparticles has been demonstrated for additional catalytic functionality of Fe3O4@PDA-PEI, and Fe3O4@PDA-PEI-Au could effectively catalyze the reduction of 4-NP at ambient temperature within 9 min. Fe3O4@PDA-PEI with the advantages of facile fabrication, easy separation, excellent adsorption, and catalysis performance could be used as a promising polymer composite material in complicated wastewater environment. © 2023 Wiley Periodicals LLC.  相似文献   

18.
Much attention has been increasingly focused on the applications of noble metal nanoparticles (NPs) for the catalytic degradation of various dyes and pigments in industrial wastewater. We have demonstrated that Pd NPs/Fe3O4-PEI-RGO nanohybrids exhibit high catalytic activity and excellent durability in reductive degradation of MO, R6G, RB. Specific surface area was successfully prepared by simultaneous reduction of Pd(OAc)2 chelating to PEI grafted graphene oxide nanosheets modified with Fe3O4. The as-prepared Pd NPs/Fe3O4-PEI-RGO nanohybrids were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, high-resolution TEM and energy dispersive X-ray spectroscopy, and UV-lambda 800 spectrophotometer, respectively. The catalytic activity of Pd NPs/Fe3O4-PEI-RGO nanohybrids to the degradation of MO, R6G, RB with NaBH4 was tracked by UV-visible spectroscopy. It was clearly demonstrated that Pd NPs/Fe3O4-PEI-RGO nanohybrids exhibited high catalytic activity toward the degradation of dyes and pigments, which could be relevant to the high surface areas of Pd NPs and synergistic effect on transfer of electrons between reduced graphene oxide (RGO), PEI and Pd NPs. Notably, Pd NPs/Fe3O4-PEI-RGO nanohybrids were easily separated and recycled thirteen times without obvious decrease in system. Convincingly, Pd NPs/Fe3O4-PEI-RGO nanohybrids would be a promising catalyst for treating industrial wastewater.  相似文献   

19.
In this work, we have investigated a novel one-step fabrication of Ag-deposited Fe2O3 nanoparticles and their application for the catalytic reduction of 4-nitrophenol to 4-aminophenol by NaBH4. To deposit Ag onto them, Fe2O3 particles were dispersed in a reaction mixture consisting of ethanolic AgNO3 and butylamine, and then the reaction mixture was incubated and shaken for 40 min at 45 °C. With this simple and surfactant-free fabrication of Ag-deposited Fe2O3 nanoparticles, we can avoid contamination in the final product, which makes them suitable for further catalytic applications. Since the magnetic particles are readily recovered from the solution phase without centrifugation and/or filtering, the Ag-deposited Fe2O3 nanoparticles prepared in this work have been exploited as solid phase catalysts for the reduction of 4-nitrophenol in the presence of NaBH4. At the end of the reaction, the Ag-deposited Fe2O3 catalyst particles still remain active. They can thus be separated from the product, 4-aminophenol, simply using a neodium magnet and can be recycled a number of times.  相似文献   

20.
Porous Fe3O4/C microspheres, which were Fe3O4 nanocrystals (~8?nm) embedded in an open nanostructured carbon network, were successfully synthesized via a facile hydrothermal process. The porous Fe3O4/C microspheres possessed many distinct attributes that facilitate efficient broadband electromagnetic wave absorption (EMWA). EMWs were attenuated through multiple reflections and absorption in the 3D interconnected porous structure of the microspheres; these processes collectively improved the interaction between the EMWs and the absorber. Additionally, the carbon network and embedded Fe3O4 nanoparticles caused significant dielectric losses and magnetic losses, respectively, which also enhanced EMWA. The EMWA characteristics of the microspheres could be precisely tuned via changing the carbon content to achieve optimized impedance matching. Porous Fe3O4/C microspheres with a 71.5?wt% carbon content displayed particularly impressive EMWA properties: a maximum reflection loss (RL) value of ??31.75 across broad band frequencies in the range of 7.76–12.88?GHz (RL < ?10?dB) at an absorber thickness of 3.0?mm. These excellent EMWA properties may be attributed to both dielectric loss (carbon) and magnetic loss (Fe3O4). Additionally, the 3D interconnected porous structure of the Fe3O4/C microspheres is especially favorable for impedance matching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号