首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oil spill has caused significant attention on a global scale due to its damage to the environment and the economy. The development of economically and ecologically friendly oil sorbent materials has important meaning for the oil spill concern. In this work, we explored the non-solvent impacted thermally induced phase separation (NITIPS) method to prepare the cellulose triacetate aerogel (CA) with low density (6.4–40.5 mg/cm3), high porosity (96.9–99.5%), large water contact angle (>129°) and high specific surface area (193–573 m2/g) as the oil sorbent material. The oil absorption capacity of CA with vegetable oil and vacuum pump oil reached 80.8 g/g and 38.9 g/g, respectively, consistent with Fick's law of diffusion. Moreover, the NITIPS method provided simpler process and controlled the shape of CA compared with the traditional thermally induced phase separation method. This study proved that the CA prepared by NITIPS methods played an important role as a potential oil absorption solids in the field of oil spill and organic chemical leakage.  相似文献   

2.
Conventional amphoteric and porous materials are often synthetic and polymer based; this tends to raise environmental concerns because of their poor biodegradability. To address this issue, novel natural-polymer- or amphoteric-modified cellulose and MOt (ACeOMt) composite beads with a typical mesoporous structure were developed in this study. These green-based porous beads, consisting of regenerated bagasse cellulose and oxalic acid modified montmorillonite (OMt), were successfully prepared by a facile coagulation method with fine calcium carbonate as a pore-forming agent. The beads with the best sphericity were obtained at a 1:1 weight ratio of cellulose to OMt. Scanning electron microscopy observation showed that ACeOMt possessed a smooth surface with abundant macropores. X-ray diffraction and thermogravimetric analysis characterizations demonstrated the success of the modification of montmorillonite and cellulose. The results of Brunauer–Emmett–Teller analysis indicate the presence of a typical mesoporous structure in the composite with a relatively high specific surface area. The resulting ACeOMt are expected to be biodegradable, nonhazardous, and applicable for various uses, including adsorption, chromatography, and soil remediation. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47941.  相似文献   

3.
Several composite membranes have been prepared from cellulose triacetate (CTA) and activated carbon (AC) by solvent casting, varying temperature from 35 to 55°C and relative humidity (RH): 10–70%. Some conditions promoted AC particle agglomeration which is evidenced by SEM and IFME® program. In those membranes, where homogeneity is attained, a deep characterization has been carried out by DMA, MDSC, thermoporometry, solute transport, and AFM. When AC is added in films, Tg is lowered and the fraction of pores with bigger size is augmented. Molecular weight cut off calculated by solute transport, increases from 801.15 to 1194.29 kDa using 1% AC at RH 70% and T 35°C. Water flux is of 5.23 Lm?2 h?1 bar?1. Arsenic removal has been performed, achieving a 45% tested from a 500 ppb arsenic solution, where several factors such as electrical rejection, adsorption and exclusion, could contribute to the total membrane nanofiltration process. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40134.  相似文献   

4.
Speciality high‐strength board, packaging grades, and novel cellulose‐based nanocomposites may incorporate microcellulosic nanofibrillated materials (MNFC), although the rheological properties of such strongly water sorbing structures are challenging for processing technologies. This study introduces rheological methods for the evaluation of dewatering and flow behavior of such high consistency furnishes to exemplify the effect of energy input on microfibrillar material (MFC), as produced by a combination of enzymatic pretreatment and increased levels of fluidization. The large number of fibril contact points act to entrap water, held both on the fibril surface as immobilized water and in the interfibril spacing forming the gel structure. Tuning of the rheological and dewatering properties has been enabled by in situ precipitation of calcium carbonate filler (in situ PCC) on the MFC, which results in the production of a more uniform furnish. Such in situ PCC coated MFC fibrils incorporated into furnish were seen to increase dewatering rate over that of the furnish mix without the in situ precipitated filler primarily because of the reduction in total surface area of the fibers and fibrils when the pigment is present on the fibrillary surface. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43486.  相似文献   

5.
Cellulose-based aerogels have been regarded as potential adsorbent materials because of their unique structural features and chemical stability. Herein, we prepared the composite aerogels containing cellulose and N,N′-methylene bisacrylamide (MBA) using N-methylmorpholine-N-oxide (NMMO) as a green solvent via a freeze-drying process. Owing to the strong chemical interaction between CC bonds of MBA and the functional groups of cellulose, as-obtained cellulose/MBA aerogels present favorable MBA-induced thermal/mechanical stable three-dimensional network structure, in which the abundant macroporous structure, low density and high porosity lead to a significantly enhanced adsorption capacity (260.31 mg∙g−1) toward congo red dye in aqueous solution compared with the pure cellulose aerogels. Moreover, the effect of the cellulose concentration and cross-linking degree on the morphology and adsorption properties for cellulose/MBA aerogels was systematically investigated. This present work provides a low-cost and environmental-friendly synthesis method for designing the functionalization of cellulose-based aerogel, which may be achieved the advanced performance in wastewater treatment.  相似文献   

6.
Composites were prepared from cellulose acetate (CA) and cellulose nanocrystals (CNC) by melt extrusion using two methods for the introduction of CNC: direct mixing and predispersion in CA solution. CNC were isolated using hydrochloric acid to increase thermal stability allowing the composites to be processed above 150 °C. The effect of CNC dispersion on the composites morphology, thermal, and mechanical properties was investigated. Field emission scanning electron microscopy and transmission electron microscopy results indicated that the predispersion method allows better CNC dispersion and distribution when compared to the direct mixture method. In addition, predispersion promotes preferential CNC orientation in relation to the injection flow. The predispersion method also showed a 14% Young's modulus increase in composites containing 15 wt % CNC while no significant change was observed when using the direct mixing. The results obtained in this work show that, to achieve the percolation threshold, nanoparticle distribution is as important as their content. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44201.  相似文献   

7.
Microcrystalline cellulose (MCC) and its oxidized product dialdehyde cellulose (DAC) were introduced as the reinforcing filler in epoxidized soybean oil (ESO) thermosetting polymer. The composites comprising up to 25 wt % cellulose fillers were obtained via a solution casting. The reinforcing effects of the cellulose were evaluated by microstructure analysis, dynamic mechanical analysis, and tensile and thermal stability tests. The results showed that at the same filler concentration, DAC led to higher stretching strength, modulus, and break elongation than MCC. The 5 wt % DAC loading in ESO polymer exhibits the highest toughness and thermal stability due to the good dispersion and interfacial interaction between DAC and ESO polymer matrix. The increased storage modulus and glass transition temperature also indicate the cellulose fillers impart stiffness to the composites. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42488.  相似文献   

8.
The preparation of partial acetylation of cellulose derived from rice straw was catalyzed by phosphotungstic acid with various numbers of crystal water, and H3PW12O40·4H2O was found to be as effective catalyst. The yield of the cellulose acetate was significantly enhanced by converting cellulose directly isolated from rice straw into microcrystalline cellulose before acetylation. The optimization of the acetylation was investigated by varying the amount of catalyst and acetic anhydride as well as reaction conditions including reaction time and medium, and a degree of substitution (DS) value of 2.29 and yield of 62.9% were obtained under the optimized conditions. The structure and the formation of the acetylated product were confirmed by Fourier transform infrared spectroscopy (FTIR) and powder X‐ray diffraction (XRD) technique, the thermal properties were determined by thermal analysis including thermogravimetry analysis (TGA) and differential scanning calorimetry (DSC), and the morphology was observed by scanning electron microscope (SEM). © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41212.  相似文献   

9.
Cellulose nanofibers (CNFs) have many useful properties, including high strength and low thermal expansion, and are also environmentally friendly, readily renewable, safe, and biodegradable. The focus of this study was the development of lightweight thermoplastic polymer composites with good mechanical properties based on the incorporation of CNFs that have undergone surface pretreatment with a cationic reagent. The polyamide (PA12) was mixed with surface‐treated CNFs using a twin screw extruder and the resulting pellets were injection molded. The Izod impact strength without notch of CNF‐based composites exceeded that of composites incorporating organophilic montmorillonite (OMMT), a representative nanocomposite material. When the Izod impact test without notch, the impact hammer was stopped by the specimen with incorporation of surface treated CNF. Furthermore, the bending modulus and strength were equal to or greater than that of OMMT composites. The heat distortion temperature was improved as 33°C from neat PA12, and moreover improved as 29°C from OMMT composites. Cationic pretreatment of the CNF surfaces was found to increase the dispersion of the fibers and also to greatly improve the mechanical and thermal properties of the composites. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40920.  相似文献   

10.
Syndiotactic polypropylene (SPP)/ethanol swelled microfibrous cellulose (MFC) composite was prepared by a melting mixer, and its morphology and tensile properties were studied. The scanning electron microscope microphotograph did not show the aggregated MFC part up to the 40 wt % MFC loading content, and the Young's modulus was exponentially increasing with the increase of the MFC loading content. These results suggested that the MFC was well‐dispersed in the SPP matrix by an ethanol surfactant work. The Young's modulus was much higher than that of the composite with commonly used fibrous cellulose and moreover, exceeded the theoretical one obtained from the Halpin‐Tsai equation. The differential scanning calorimetry and wide‐angle X‐ray diffraction measurements showed that the MFC acted as a good α‐nucleation agent for SPP. It was found that the excessive Young's modulus of the MFC composite was originated from an increase of that of the SPP matrix induced by the α‐nucleation effect. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

11.
A cauliflower-like ternary nanocomposite of poly(3,4-ethylenedioxythipohene)/nanocrystalline cellulose/manganese oxide (PEDOT/NCC/MnO2) was synthesized using one-step electropolymerization technique. The effect of manganese (Mn) concentration on the supercapacitive performance was investigated. The structural and morphology studies were conducted using field emission scanning electron microscope, Fourier transform infrared spectroscopy, Raman spectroscopy, and X-ray diffraction. The morphology of ternary nanocomposite at an optimized concentration of Mn resembles the cauliflower-like structure. The two-electrode electrochemical analysis of a ternary nanocomposite PEDOT/NCC/MnO2 exhibited a higher specific capacitance of 144.69 F/g at 25 mV/s in 1.0 M potassium chloride compared to PEDOT/NCC(63.57 F/g). PEDOT/NCC/MnO2 ternary nanocomposite was able to deliver a specific power of 494.9 W/kg and 10.3 Wh/kg of specific energy at 1 A g−1 and retained 83% of initial capacitance after 2,000 cycles. These promising results from the incorporation of Mn displayed great prospective in developing PEDOT/NCC/MnO2 as an electrode material for supercapacitor.  相似文献   

12.
A cellulose‐based amphiphilic co‐polymer with grafted myristyl groups was synthesized and used as an additive to modify polysulfone (PSf) membranes. Fourier transform infrared (FTIR) spectroscopy and Solid‐state cross polarization magic angle spinning carbon‐13 nuclear magnetic resonance (CP/MAS 13C NMR) spectroscopy were used to characterize the structure of the synthesized amphiphilic cellulose. The good compatibility between amphiphilic co‐polymer and PSf was confirmed by differential scanning calorimetry (DSC). Scanning electron microscopy (SEM) was conducted to inspect morphology of the membrane. Furthermore, Thermal performance was indicated by thermogravimetric analysis (TGA). Contact angle, flux and retention behavior were also measured in this work. The structural similarity enhanced compatibility among components by introducing flexible alkyl groups. According to the findings obtained from characterization, better compatibility of cellulose with PSf was achieved after amphiphilic treatment. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41664.  相似文献   

13.
An array of highly conductive, lightweight and flexible cellulose nanopapers as effective attenuators of electromagnetic radiations within 8.2–12.4 GHz (X band) were formulated via in situ polymerization of pyrrole monomers on to cellulose nanofibers (CNFs). It is quite obvious that the free hydroxyl groups on the surface of CNFs facilitate the formation of intense intermolecular hydrogen bonding with PPy which is envisaged for its excellent electromagnetic shielding performance with an average shielding effectiveness of ca. –22 dB (>99% attenuation) at 8.2 GHz for a paper having 1 mm thickness. The fabricated papers displayed a predominant absorption mechanism (ca. 89%) rather than reflection (ca. 11%) for efficiently attenuating electromagnetic radiations, which has a considerable importance in the modern telecommunication sector. Thus, the designed PPy/CNF papers would replace the conventional metal-based shields and pave way for the development of green microwave attenuators functioning via a strong absorption mechanism. The PPy/CNF nanopapers exhibited a DC conductivity of 0.21 S/cm, a prime requisite for the development of highly efficient electromagnetic shields. Undoubtedly, such nanopapers can be employed in wide range of applications such as electrodes for supercapacitors and other freestanding flexible paper-based devices.  相似文献   

14.
This article focuses on controlling the morphology of regenerated cellulose aerogel (RCA) and its application as a template for the preparation of functional cellulose nanoparticles (FCNPs). RCA is prepared by lyophilizing cellulose hydrogel which is fabricated through a sol–gel method in sodium hydroxide (NaOH)/urea aqueous solution. The morphology of RCA is adjusted by varying the gelation temperature and time. With the gelation temperature and time increasing, lamellar RCA transforms into strings of cellulose nanoparticles. Subsequently, RCA with the morphology of "strings of nanoparticles" is modified through the bulk condensation of l -lactic acid and RCA. Eventually, the prepared functionalized RCA (FRCA) is dispersed in an organic solvent to obtain purified FCNPs. The results demonstrate that single FCNP can be obtained by dispersing FRCA in dimethyl sulfoxide. Moreover, the prepared FCNPs have uniform size, good thermal-stability, and increasing hydrophobicity, which are ideal candidates for polymer composites in terms of fillers.  相似文献   

15.
Spherical activated carbons (ca. 30–100 μm in diameter) were synthesized from commercial spherical cellulose beads. The addition of guanidine phosphate was performed as the pretreatment, and CO2 activation was applied for enhancing the specific surface area. The addition of guanidine phosphate drastically improved the yield of carbon during the activation process. The specific surface area reached 1545 m2 g?1 for the sample heat‐treated at 850°C for 1 h in flowing N2 and continuously for 3 h in flowing CO2 activation. The calculated capacitance values per area (F m?2) for the pore size of less than 1 nm was large in the case of small current density. The distortion of the solvation shell could be the reason for the large capacitance value for the small pore size of less than 1 nm. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40950.  相似文献   

16.
In this work, regenerated cellulose (RC) tubes with the porous structure were successfully fabricated for constructing the non-invasive detection platform of vascular microenvironment. Polyethylene oxide (PEO) as a porogen was applied to induce porous structure of cellulose tubes. Tensile and burst pressure tests were carried out to evaluate the effects of PEO molecular weight and amount on the mechanical properties of cellulose tubes. The results showed that tensile strength of RC tubes was increased with increasing PEO molecular weight. The compliance of cellulose tubes decreased with increasing the PEO content. When 120 kDa PEO was applied, the average tensile strength of RC tubes could reach 1.27 MPa. The maximum burst pressure and compliance of RC tubes could reach 488.25 ± 35 mmHg and 7.50 ± 3.7%/100 mmHg, respectively. Human umbilical vein endothelia cells (HUVECs) exhibited obvious proliferation on cellulose tubes, and the collagen coating further improve the biocompatibility. The incorporated collagen further improved adhesion of the cells and growth on cellulose tubes. This work provided a kind of cellulose-based tube material with potential application for the construction of the vitro vascular microenvironment.  相似文献   

17.
In the present study, free radical graft copolymerization of acrylic monomers and microcrystalline cellulose (MCC) was applied to develop a biopolymer for natural rubber reinforcements. The copolymerization was carried out in aqueous media. Cerium ammonium nitrate was employed as the initiator in the presence of nitric acid. Acrylic monomers used in the copolymer synthesis were ethyl acrylate (EA) and butyl acrylate (BA). Effects of monomer concentration, initiator concentration, polymerization time, and polymerization temperature on the obtained graft copolymers were investigated. The graft parameters were obtained by thermal gravimetric analysis method. The obtained copolymers (MCC‐g‐PEA, MCC‐g‐PBA) were characterized by attenuated total reflection, wide‐angle X‐ray diffraction, field‐emission electron microscopy, and thermal gravimetric analysis. In comparison to native MCC, better thermal stability of graft copolymers were observed. In addition, the graft copolymers reinforced natural rubber composites were produced, and sulfur was used as the vulcanizing agent. Their vulcanization and mechanical properties were characterized. Comparing to the native MCC reinforced natural rubber composites, the copolymers reinforced natural rubber composites shows improved mechanical properties, indicating the copolymer's potential application as rubber reinforcements. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43087.  相似文献   

18.
A fiber-reinforced rubber composite was prepared by mixing aramid nanofibers (ANF) suspension and nitrile rubber (NBR) latex. The effects of ANF content and corresponding surface modification on the microstructure, vulcanization performance, processing and mechanical properties of composite materials, were systematically investigated. We found that, compared with commonly used short-cut aramid fibers, ANF fillers tend to form a stronger filling network within NBR matrix, resulting in a pronounced Payne effect. By improving the interfacial adhesion via dopamine (DA) coating onto ANF surface, the tensile strength can be further enhanced as expected. Besides, to eliminate the detriment of mechanical performance due to residual sodium polyacrylate in the course of flocculation, cellulose nanocrystal (CNC) was adopted to serve as a thickener during solution mixing. The incorporation of CNC can significantly improve the mechanical properties, which identifies a synergistic reinforcement effect arising from the cooperation of two types of fillers.  相似文献   

19.
We fabricate composite hydrogels using surface‐modified cellulose nanofiber (CNF) and N‐isopropylacrylamide (NIPAm) as a multifunctional crosslinker and monomer, respectively. We expect to produce unique network structures that lead to elastomeric properties rarely reported for CNF‐based materials. The modification of CNF is performed to introduce polymerizable vinyl groups onto the surface of CNF via condensation between the surface hydroxyl groups and 3‐(trimethoxysilyl)propylmethacrylate. The modification and morphology of the surface‐modified CNF (mCNF) are confirmed by FTIR, solid‐state NMR, and FE‐SEM, respectively. We conduct in situ radical polymerization under various conditions using mixtures of the mCNF aqueous suspension, NIPAm monomer, radical initiator, and catalyst. The mechanical properties of the obtained hydrogels (water content = 90 wt %) are evaluated. The gels can be elastically stretched to more than 700 times their original lengths and exhibit an apparent shape recovery with a small permanent deformation (~1/5 of the applied deformation under the gravity field). © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42906.  相似文献   

20.
Cellulose microfibers (CMFs) having surfaces modified with polydopamine (PDPA) and octadecylamine (ODA) were prepared, and their reinforcing abilities for polypropylene (PP) were investigated. The PDPA coating was made via self-polymerization of dopamine (P-CMF), and subsequent alkylation was conducted by the reaction with ODA (OP-CMF). The modified CMFs exhibited improved dispersibility in the PP matrix due to the reduced hydrophilicity. The OP-CMF/PP composite prepared by batch mixing had a higher tensile modulus compared to that for the pure PP and composites with unmodified CMFs. However, excess alkylation lowered the tensile modulus, and the presence of an optimal degree of alkylation was demonstrated. The CMF/PP-IM composites fabricated by injection molding exhibited improved tensile properties compared to those prepared by batch mixing. Both the tensile modulus and yield stress were increased by increasing the CMF content and improved by the surface modification of the CMFs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号