首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work developed an effective way to improve the methylene blue (MB) adsorption performance of cellulose-based hydrogel by modified with tannic acid (TA). HEC-co-p(AA-AM)/TA hydrogel was synthesized by grafting of acrylic acid (AA) and acrylamide (AM) onto hydroxyethyl cellulose (HEC), followed by modified with TA. Fourier transform infrared spectroscopy manifested that AA and AM were successfully grafted onto the hydrogel, and TA was immobilized in the hydrogel. Field emission scanning electron microscope demonstrated that the hydrogel after TA modification had a homogeneous pore structure. Brunauer-Emmett-Teller (BET) surface areas, total pore volume, and average pore diameters of the hydrogel are 11.821 m2 g−1, 0.0641 cm3 g−1, and 2.538 nm, respectively. The high swelling ratio (1179.2 g g−1 in deionized water) was in favor of the MB adsorption. The results of the adsorption experiments illustrated that HEC-co-p(AA/AM) hydrogel had excellent MB adsorption performance. As the pH increases, the electrostatic attraction is enhanced, and the adsorption capacity is improved. The adsorption process was more fit with pseudo-second-order kinetics, and the maximum adsorption capacity (3438.27 mg g−1) was determined by Langmuir model. Thermodynamic studies suggested that the adsorption process is spontaneous, exothermic, and entropy reduction. X-ray photoelectron spectroscopy analysis confirmed that MB molecules were reacted with the oxygen atoms in hydroxyl and carboxyl groups by ion-exchange. High reusability demonstrated that the hydrogel could be a potential candidate for removal cationic dye from industrial effluents.  相似文献   

2.
Nanostructured chitosan/polyaniline (CH/PANI) hybrid was synthesized via in situ polymerization of aniline in the presence of chitosan. The CH/PANI hybrid was characterized by FTIR spectroscopy, X-ray diffraction, thermogravimetric analysis, and scanning electron microscopy. The CH/PANI hybrid had a nanofibrous structure with an average diameter of 70 nm. This hybrid was employed as an ecofriendly and efficient adsorbent with high adsorption capacity for the removal of Acid Green 25 (AG) and methylene blue (MB) from aqueous solutions. AG and MB were used as anionic and cationic model dyes, respectively. The CH/PANI adsorbent showed high dependence on the pH of the medium with an excellent adsorption performance and regeneration manner. The kinetics and adsorption isotherms were studied. The CH/PANI hybrid follows the pseudo second-order adsorption kinetics and Temkin isotherm model for the adsorption of both AG and MB dyes. This assumes that the enthalpy of dyes molecules decreases with the adsorption on heterogeneous surface with various kinds of adsorption sites and as well as the ability to form multilayers of the dye. Also, intraparticle diffusion was found to play an important role in the adsorption mechanism. The maximum adsorption capacity was found to be 240.4 mg g−1 of AG at pH 4 and 81.3 mg g−1 of MB at pH 11. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47056.  相似文献   

3.
《Ceramics International》2020,46(3):2960-2968
MXene and metal organic framework (MOF) were used as the main adsorbents to remove synthetic dyes from model wastewater. Methylene blue (MB) and acid blue 80 (AB) were used as the model cationic and anionic synthetic dyes, respectively. To investigate the physicochemical properties of the adsorbents used, we carried out several characterizations using microscopy, powder X-ray diffraction, a porosimetry, and a zeta potential analyzer. The surface area of MXene and MOF was 9 and 630 m2 g−1, respectively, and their respective isoelectric points were approximately pH 3 and 9. Thus, MXene and MOF exhibited high capacity for MB (~140 mg g−1) and AB (~200 mg g−1) adsorption, respectively due to their electrostatic attractions when the concentrations of the adsorbents and adsorbates were 25 and 10 mg L−1. Furthermore, the MOF was able to capture the MB due mainly to hydrophobic interactions. In terms of the advantages of each adsorbent according to our experimental results, MXene exhibited fast kinetics and high selectivity. Meanwhile, the MOF had a high adsorption capacity for both MB and AB. The adsorption mechanisms of both adsorbents for the removal of MB and AB were clearly explained by the results of our analyses of solution pH, ionic strength, and the presence of divalent cation, anion, or humic acids, as well as other characterizations (i.e., Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy). According to our results, MOF and MXene can be used as economical treatments for wastewater containing organic pollutants regardless of charge (e.g., MB and AB), and positively charged one (e.g., MB), respectively.  相似文献   

4.
《分离科学与技术》2012,47(1):129-141
The present study reports the feasibility of two synthetic crystalline lamellar nano-silicates, sodic magadiite (Na-mag) and its converted acidic form (H-mag), as alternative adsorbents for the removal of the dye methylene blue (MB) from aqueous solutions. The ability of these adsorbents for removing the dye was explored through the batch adsorption procedure. Effects such as the pH and the adsorbent dosage on the adsorption capacities were explored. Four kinetic models were applied, the adsorption being best fitted to a fractionary-order kinetic model. The kinetic data were also adjusted to an intra-particle diffusion model to give two linear regions, indicating that the kinetics of adsorption follows multiple sorption rates. The equilibrium data were fitted to Langmuir, Freundlich, Sips, and Redlich-Peterson isotherm models. The maxima adsorption capacities for MB of Na-mag and H-mag were 331 and 173 mg g?1, respectively.  相似文献   

5.
Batch lignocellulose-g-poly(acrylic acid)/montmorillonite (LNC-g-PAA/MMT) hydrogel nanocomposites were applied as adsorbents. The nanocomposites were characterized by FTIR, XRD, SEM, and TEM. The results showed that montmorillonite (MMT) could react with the monomers and change the structure of polymeric network of the traditional superabsorbent materials, an exfoliated structure was formed in the nanocomposites. The effect of process parameters such as MMT content (wt%), contact time (t), initial concentration of dye solution (C 0), adsorption temperature (T), and pH value (pH) of the dye solution for the removal of methylene blue (MB) from aqueous solution were also studied. The results showed that the adsorption capacity for MB increased with increasing contact time, initial dye concentration, and pH value, but decreased with increasing MMT content and temperature. The adsorption kinetics were better described by the pseudo-second-order equation, and their adsorption isotherms were better fitted for the langmuir equation. By introducing 20 wt% MMT into LNC-g-PAA polymeric network, the obtaining hydrogel composite showed the high adsorption capacity 1994.38 mg/g and economic advantage for MB. The desorption studies revealed that the composite provided the potential for regeneration and reuse after MB dye adsorption, which implied that the composite could be regarded as a potential adsorbent for cationic dye MB removal in a wastewater treatment process.  相似文献   

6.
《分离科学与技术》2012,47(14):2298-2304
The preparation of poly(methacrylic acid) modified chitosan microspheres (PMAA-GLA-CTS) and its application for the removal of cationic dye, methylene blue (MB), in aqueous solution in a batch system were described. The modified chitosan was characterized using FTIR and XPS analysis. The effects of the pH of the solution, contact time, and initial dye concentration were studied. The adsorption capacity of the microspheres for MB increased significantly after the modification as a large number of carboxyl groups were introduced. The equilibrium process was better described by the Langmuir rather than the Freundlich isotherm. According to the Langmuir equation, the maximum adsorption capacity was 1 g · g?1 for MB. Kinetic studies showed better correlation coefficients for a pseudo-second-order kinetic model, confirming that the sorption rate was controlled by a chemisorption process. Photocatalytic regeneration of spent PMAA-GLA-CTS using UV/TiO2 is effective. Further, the regenerated PMAA-GLA-CTS exhibits 90% efficiency for a subsequent adsorption cycle with MB aqueous solutions.  相似文献   

7.
Abstract

This study aimed to investigate the adsorption capacity of Iranian Luffa cylindrica as a natural lignocellulosic adsorbent for biosorption of methylene blue (MB) using a fixed-bed column. The response surface methodology based on central composite design was used to evaluate the interactive effects of three major operating parameters (inlet MB concentration, Luffa dosage, and feed flow rate) on the dye removal percentage (response variable). The significance of the proposed quadratic model was validated by a high coefficient of determination (R2?=?0.995) and a low p value (<0.001). The optimum biosorption conditions were determined as inlet MB concentration 38.66?mg?L?1, Luffa dosage 2.78?g, and feed flow rate 5?mL?min?1, and the maximum MB removal efficiency was founded to be 51% (qmax?=?21.4?mg?g?1) at optimum conditions. The breakthrough curves were predicted by the Adams–Bohart and Thomas models using nonlinear regression analysis, whereas the experimental data fitted well with the Thomas model (R2?≈?0.96–0.98). Further surface modification studies enabled us to achieve the maximum MB removal efficiency of 77% (qmax?=?46.58?mg?g?1) with NaOH-modified Luffa, which is attributed to the intensification of the negatively charged surface of the base-modified adsorbent with hydroxyl groups. The nature of biosorbent–dye interactions was also evaluated by FTIR analysis. The highest desorption performance of MB from Luffa fibers was obtained with HCl solution reaching a desorbed amount of qdes?=?130.5?mg in the column studies. The ion exchange is introduced as the dominant biosorption mechanism of MB onto Luffa fibers in this study.  相似文献   

8.
Lysozyme adsorption onto Cibacron Blue F3GA attached and Cu(II) incorporated poly(2-hydroxyethyl methacrylate–ethylene glycol dimethacrylate) [poly(HEMA-EGDMA)] microspheres was investigated. The microspheres were prepared by suspension polymerization. Various amounts of Cibacron Blue F3GA were attached covalently onto the microspheres by changing the initial concentration of dye in the reaction medium. The microspheres with a swelling ratio of 65%, and carrying different amounts of dye (between 1.4 and 22.5 µmol/g−1) were used in the lysozyme adsorption studies. Lysozyme adsorption on these microspheres from aqueous solutions containing different amounts of lysozyme at different pH values was investigated in batch reactors. The lysozyme adsorption capacity of the dye–metal chelated microspheres (238.2 mg g−1) was greater than that of the dye-attached microspheres (175.1 mg g−1). The maximum lyzozyme adsorption capacities (qm) and the dissociation constant (kd) values were found to be 204.9 mg g−1 and 0.0715 mg ml−1 with dye-attached and 270.7 mg g−1 and 0.0583 mg ml−1 with dye–metal chelated microspheres, respectively. More than 90% of the adsorbed lysozyme were desorbed in 60 min in the desorption medium containing 0.5 M KSCN at pH 8.0 or 25 mM EDTA at pH 4.9. © 1999 Society of Chemical Industry  相似文献   

9.
N-succinyl-chitosan-g-polyacrylamide/attapulgite (NSC-g-PAM/APT) composite was applied as adsorbent for the removal of methylene blue (MB) from aqueous solution. The initial pH value of the dye solutions, the contact temperature, the contact time and the concentration of the dye solutions on adsorption capacity of the composite for MB dye were investigated. The adsorption kinetics and isotherms were also studied. It was shown that all the sorption processes were better fitted by pseudo-second-order equation and the Langmuir equation. The results indicated that the adsorption capacity of the composite was higher than those of chitosan (CTS) and attapulgite (APT). The desorption studies revealed that the composite provided the potential for regeneration and reuse after MB dye adsorption, which implied that the composite could be used as quite effective adsorbent for the removal of MB from aqueous solution.  相似文献   

10.
This study analyzed the viability of using malacoculture residue (Mytella falcata) to produce layered double hydroxides (LDHs) and for its subsequent use as an adsorbent. The CaAl/LDH-RE material was produced with calcium oxide from the residue and the CaAl/LDH-AP was produced with a commercial reagent. Both were used to remove methyl orange (MO) and methylene blue (MB) dyes. The CaAl/LDH-RE presented a surface area of 28.54 m2 g−1, being 65.62% larger than the CaAl/LDH-AP material (17.23 m2 g−1). The adsorbents showed mesopores distributed on a surface formed by plates in the form of hexagonal sheets arranged in an overlapping manner. The dosage of 0.05 g L−1 obtained the removal of 95% and 97% for MO, while for MB it was 94% and 93% using the adsorbents LDH/CaAl-AP and LDH/CaAl-RE, respectively. The system reached equilibrium at 90 min for MO and 120 min for MB. The pseudo-second order model well represented the kinetic data reaching 11.36 mg g−1 (CaAl/LDH-RE) and 8.42 mg g−1 (CaAl/LDH-AP) for MO, and 4.47 mg g−1 (CaAl/LDH-RE) and 4.14 mg g−1 (CaAl/LDH-AP) for MB. The Freundlich model better represented the isothermal data, where the temperature exerted little influence. Adsorbents showed similar removal percentages in real and synthetic matrices. The LDH/CaAl-RE can be applied in up to 3 cycles, maintaining its adsorption capacity. These results corroborate the use of MFW to produce CaAl/LDH-RE, which can be used for the efficient removal of organic pollutants in an aqueous solution.  相似文献   

11.
An adsorbent was prepared from acetic acid lignin (AAL) to investigate the adsorption mechanism of methylene blue (MB) from water. AAL was first deacetylated in NaOH aqueous solution and then fractionated by methanol to prepare adsorbents with various acidic hydroxy groups. The adsorption capacities of MB increased with the increase in initial pH and with the decrease in adsorbent dosage. The results of adsorption kinetics indicated the dye uptake process is a chemisorption. The adsorption capacity of lignin for MB adsorption increased from 18.2 to 63.3 mg g?1 as AAL was deacetylated and fractionated.  相似文献   

12.
Modified activated carbon are carbonaceous adsorbents which have tetrabutyl ammonium iodide (TBAI) and sodium diethyl dithiocarbamate (SDDC) immobilised at their surface. This study investigates the adsorption of toxic ions, copper, zinc, chromium and cyanide on these adsorbents that have undergone surface modification with tetrabutyl ammonium (TBA) and SDDC in wastewater applications. The modification technique enhance the removal capacity of carbon and therefore decreases cost-effective removal of Cu(II), Zn(II), Cr(VI) and CN from metal finishing (electroplating unit) wastewater. Two separate fixed bed modified activated carbon columns were used; TBA-carbon column for cyanide removal and SDDC-carbon column for multi-species metal ions (Cu, Zn, Cr) removal. Wastewater from electroplating unit containing 37 mg l−1 Cu, 27 mg l−1 Zn, 9.5 mg l−1 Cr and 40 mg l−1 CN was treated through the modified columns. A total CN removal was achieved when using the TBA-carbon column with a removal capacity of 29.2 mg g−1 carbon. The TBA-carbon adsorbent was found to have an effective removal capacity of approximately five times that of plain carbon. Using SDDC-carbon column, Cu, Zn and Cr metal ions were eliminated with a removal capacity of 38, 9.9 and 6.84 mg g−1, respectively. The SDDC-carbon column has an effective removal capacity for Cu (four times), Zn (four times) and Cr (two times) greater than plain carbon.  相似文献   

13.
BACKGROUND: The removal of cationic dyes from wastewater is of great importance. Three zeolites synthesized from coal fly ashes (ZFAs) were investigated as adsorbents to remove methylene blue (MB), a cationic dye, from aqueous solutions. Experiments were conducted using the batch adsorption technique under different conditions of initial dye concentration, adsorbent dose, solution pH, and salt concentration. RESULTS: The adsorption isotherm data of MB on ZFAs were fitted well to the Langmuir model. The maximum adsorption capacities of MB by the three ZFAs, calculated using the Langmuir equation, ranged from 23.70 to 50.51 mg g?1. The adsorption of MB by ZFA was essentially due to electrostatic forces. The measurement of zeta potential indicated that ZFA had a lower surface charge at alkaline pH, resulting in enhanced removal of MB with increasing pH. MB was highly competitive compared with Na+, leading to only a < 6% reduction in adsorption in the presence of NaCl up to 1.0 mol L?1. Regeneration of used ZFA was achieved by thermal treatment. In this study, 90–105% adsorption capacity of fresh ZFA was recovered by heating at 450 °C for 2 h. CONCLUSION: The experimental results suggest that ZFA could be employed as an adsorbent in the removal of cationic dyes from wastewater, and the adsorptive ability of used ZFA can be recovered by thermal treatment. Copyright © 2010 Society of Chemical Industry  相似文献   

14.
The adsorption of methylene blue (MB) on graphene-based adsorbents was tested through the batch experimental method. Two types of graphene-based adsorbents as graphene oxide (GO) and reduced graphene oxide (RGO) were compared to investigate the best adsorbent for MB removal. So that optimizing the MB removal for the selected type of graphene-based adsorbent, the diverse experimental factors, as pH (2–10), contact time (0–1440 min), adsorbent dosage (0.5–2 g/L), and initial MB concentration (25–400 mg/L) were analyzed. The conclusions indicated that the MB removal rised with an increase in the initial concentration of the MB and so rises in the amount of adsorbent used and initial pH. Maximum dye removal was calculated as 99.11% at optimal conditions after 240 min. Adsorption data were compiled by the Langmuir isotherm (R2: 0.999) and pseudo-second-order kinetic models (R2: 0.999). The Langmuir isotherm model accepted that the homogeneous surface of the GO adsorbent covering with a single layer. And the adsorption energy was calculated as 9.38 kJ mol−1 according to the D-R model indicating the chemical adsorption occurred. The results show that GO could be utilized for the treatment of dye-contaminated aqueous solutions effectively.  相似文献   

15.
A novel fibrous adsorbent that grafts glycidyl methacrylate (GMA) and methacrylic acid (MAA) monomer mixture onto poly(ethylene terephthalate) (PET) fibers was used for removal of methylene blue (MB) in aqueous solutions by a batch equilibration technique. The operation parameters investigated included, pH of solution, removal time, graft yield, dye concentration, and reaction temperature. The adsorption rate of MB is much higher on the MAA/GMA‐grafted PET fibers than on the ungrafted PET fibers. MB was removed 99% the initial dye concentration at 10 mg L−1 and 93% at 200 mg L−1 by monomers mixture‐grafted PET fibers. Pseudofirst order and pseudosecond order kinetic equations were used to examine the experimental data of different graft yield. It was found that the pseudosecond order kinetic equation described the data of dye adsorption on fibrous adsorbent very well. The experimental isotherms data were analyzed using Langmuir and Freundlich isotherm models. The data was that Freundlich isotherm model fits the data very well for the dyes on the fibers adsorbent. The dye adsorbed was easily desorbed by treating with acetic acid/methanol mixture (50% V/V) at room temperature. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
Chitosan-modified palygorskite (CTS-modified PA) was prepared by surface grafting of PA with chitosan, and the CTS-modified PA was used as an effective adsorbent for the removal of reactive dye. The effects of various experimental parameters such as initial pH, adsorbent dosage, contact time and initial dye concentration on adsorption were investigated. The adsorption behavior of CTS-modified PA showed that the adsorption kinetics and isotherms were in good agreement with the pseudo-second-order equation and the Langmuir equation, and the maximum adsorption capacity of CTS-modified PA calculated by the Langmuir model was 71.38 mg g 1, which was much higher than that of the unmodified PA (6.3 mg g 1).  相似文献   

17.
Resin was modified with ferrocene (Fc) to enhance removal of Methylene Blue (MB) and Cu2+ from simulated wastewater. The FTIR, N2‐BET, and X‐ray fluorescence analysis confirmed that Fc was successfully grafted onto the surface of resin. The adsorption capacity of Fc modified cation exchange resin (FMCER) was calculated to be 392.16 mg/g Cu2+ and 10.01 mg/g MB. Both processes were spontaneous and exothermic, best described by Langmuir equation. Pseudo‐first‐order kinetic model satisfied the adsorption of MB, while the intraparticle‐diffusion model fitted the kinetics of Cu2+ adsorption best. The result revealed a multilayer adsorption of Cu2+ on FMCER, and the kinetics maybe controlled by intraparticle diffusion, film diffusion, and competition force. The adsorption of MB and Cu2+ on FMCER were physicosorptive, with activation energies of 2.09 and 1.27 kJ/mol. pH 2–7 and 4–5 are optimum for the removal of MB and Cu2+, and pH 4 is optimal for the simultaneous removal of MB and Cu2+. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41029.  相似文献   

18.
A series of chitosan (Ch)–graphite oxide (GO)‐modified polyurethane foam (PUF) materials as adsorbents were synthesized by a foaming technique. The adsorbent was characterized through IR spectroscopy, scanning electron microscopy, and thermogravimetric analysis (TGA). Batch adsorption experiments of the cationic dye crystal violet (CV) were carried out as a function of the Ch–GO content (1.0–8.0 wt %), solution pH (2–10), dye concentration (100–300 mg/L), adsorbent dosage (10–60 mg/mL), and temperature (20–45°C). At a lower pH value, the surface of Ch–GO/PUF acquired positive charge by absorbing H+ ions; this resulted in a decreasing adsorption of the cationic CV dye because of electrostatic repulsion. As the pH of the aqueous system increased, the numbers of negatively charged sites increased by absorbing OH ions, and a significantly high electrostatic attraction existed between the negatively charged surface of Ch–GO/PUF and the cationic dye (CV) molecules. This led to maximum dye adsorption. The kinetics, thermodynamics, and equilibrium of CV adsorption onto Ch–GO/PUF were investigated. The equilibrium data for CV adsorption fit the Langmuir equation, with a maximum adsorption capacity of 64.935 mg/g. The adsorption kinetics process followed the pseudo‐second‐order kinetics model. Thermodynamic parameters analysis revealed that the adsorption of CV from an aqueous solution by a Ch–GO modified PUF material was a spontaneous and endothermic process. We concluded that Ch–GO/PUF is a promising adsorbent for the removal of CV from aqueous solutions. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41828.  相似文献   

19.
Wastewater containing dyes is frequently discharged by industrial processes and needs separation and recycling. To solve this problem, it is important to research and develop environmentally friendly, efficient adsorbent materials for pollutant separation and recovery. In this study, a poly(PEI-catechol-tetraethylenepentamine) (PPCT) adsorbent was synthesized using a simple catecholamine reaction. This adsorbent exhibited high adsorption capacity and excellent removal efficiency for Reactive Red 195 (RR-195) in wastewater. The material was characterized using SEM, FT-IR, TGA, EA, and XPS. Its performance was optimized by varying the type of polyethyleneimine and the amount added during the preparation process. The effects of temperature, pH, contact time, and salt concentration on the adsorption were systematically investigated. Additionally, the experimental data showed consistency with both the Langmuir and pseudo-second-order kinetic models, simultaneously. The maximum adsorption capacity can reach 1754 mg g−1 at 303 K, with a retention rate of 86.6% after two cycles. The removal rate exceeds 98% at a concentration of 400 mg g−1 or lower. Additionally, the protonated amine group in PPCT carries a positive charge under acidic conditions, enabling selective adsorption of the anionic dye RR-195. Consequently, PPCT exhibits an excellent adsorption effect on RR-195 and holds promising applications in pollutant removal.  相似文献   

20.
Application of an agricultural waste material, rice husk, has been investigated for preparation of activated carbon. The rice husk‐activated carbon (RHAC) was successfully utilised for the removal of a cationic dye, methylene blue (MB) from aqueous solutions. The activated carbon was prepared in presence of ZnCl2 as an activating agent under inert nitrogen atmosphere. RHAC was characterised for surface area, pore structural parameters, and point zero charge (pHZPC). The activated carbon was further characterised by Fourier transformation infrared (FT‐IR) spectrometer, X‐ray diffractometer (XRD), and scanning electron microscope (SEM). The effect of different parameters such as contact time and initial concentration, adsorbent dose, and temperature on removal of the dye from aqueous solutions was investigated. The experimental data fitted well in both the Freundlich and Langmuir isotherm models. The maximum adsorption capacity for MB was found to be 9.73 mg g−1 at 303 K. During the study of effect of adsorbent dose, almost a 100% removal was achieved at a higher dose of RHAC. Most of the experiments were carried out at an initial concentration of MB of 60 mg/L and at 303 K. Different thermodynamic parameters, viz., changes in free energy (G°), enthalpy (H°), and entropy (S°) have also been determined to explain feasibility of the process of removal. The sorption of MB on RHAC was found to be feasible, spontaneous, and endothermic in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号