首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kappa-carrageenan/polyvinyl alcohol cross-linked hydrogels was formulated using genipin as a natural and non-toxic cross-linker to achieve a controlled drug release. β-Carotene was immobilized and the release study was evaluated under in vitro conditions. Monitoring β-carotene release was carried out by structure modification using cross-linker and minimization of burst release. It was found that using genipin can stop burst release in the hydrogels and control active material better than native films as a result of structural modification. This suggests that the burst release is depended highly on the degree of cross-linking and the mesh space available for drug diffusion. Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) are carried out to study the characteristics changes of native and cross-linked hydrogels. Also, field emission scanning electron microscope (FESEM) was performed to study microstructure of hydrogels. The transport mechanism seems to be determined by the strength of the gel network due to genipin concentration changes. Finally, diffusion coefficient is determined for native and cross-linked hydrogel.  相似文献   

2.
For the need of green and sustainable development, a fibrous solid acid catalyst was developed for the transformation of low cost oils to biodiesel in an efficient and green manner. Polystyrene was electrospun into ultrafine fibers with mean diameter of ~1.34 μm, and then simultaneously cross-linked and sulfonated in sulfuric acid/acetic acid mixed solvent with paraformaldehyde as the external cross-linker. The cross-linking and sulfonation degrees were controllable by changing the ratio of sulfuric acid/acetic acid. After sulfonation and cross-linking, the solvent resistance, chemical structure, and composition of these fibers were separately characterized by scanning electron microscopy, infrared spectroscopy, and elemental analysis. At last, this novel fibrous solid acid catalyst was used to catalyze the esterification reaction of palmitic acid and methanol for biodiesel production. After optimizing the reaction conditions, this fibrous solid acid catalyst can catalyze the esterification of palmitic acid and methanol with the conversion up to 92% under mild reaction conditions. Moreover, due to the fibrous structure, this fibrous solid acid catalyst could be readily separated and reused.  相似文献   

3.
This paper is concerned with the cross-linking of poly(vinyl alcohol) (PVA) using maleic acid as the cross-linker. The curative (maleic acid) dose and the curing temperature and time were varied between 2.5 and 60% (w/w), 120 and 160 °C and 30 and 120 min, respectively. From a thorough swelling study in both hot and cold water (percentage swelling, gel content, swelling ratio, etc-) the optimum curative dose and curing conditions have been evaluated. The molecular weight between the cross-links exhibited a sharp fall up to a maleic acid dose of 20% (w/w). A comparative evaluation of maleic acid cross-linked and heat-treated PVA films has been done. Better heat stability for maleic acid cross-linked PVA was observed from thermogravimetric analysis. A shift in glass transition temperature was observed for both heat-treated and maleic acid treated PVA compared with the virgin one. IR spectroscopic study indicated the presence of an ester linkage and an olefinic double bond in maleic acid treated and heat-treated PVA films, respectively. Maleic acid cross-linked PVA is quite stable in different polar and nonpolar solvents. A definite structural pattern has been observed in maleic acid cross-linked PVA films through scanning electron microscopy.  相似文献   

4.
Compared with conventional precipitation polymerization method, cross-linked poly(4-vinylpyridine) (P4VP) and its microgels copolymerized with α-methacrylic acid (MAA) were synthesized through a new route of stabilizer-free polymerization in supercritical fluids. The yellow, dry, fine powders were directly obtained from precipitation polymerization of 4-vinylpyridine in supercritical carbon dioxide (scCO2) at pressures ranging from 70.0 to 230 bar, using N,N′-methylenebisacrylamide as cross-linker. The effects of the reaction pressure, cross-linker ratio, initiator concentration, and reaction time were investigated. The capacity of this microgel for adsorption of copper(II) was also studied. At higher cross-linker concentrations, a high yield of the cross-linked P4VP microgel was generated in scCO2, and its particle size was less than 300 nm. Polymerization of cross-linked P4VP in scCO2 was extremely sensitive to the density of the continuous phase. The adsorption followed the Langmuir isotherm. The adsorption capacities of cross-linked P(4VP-co-MAA) and cross-linked P4VP were 47.2 and 26.9 mg g−1, respectively.  相似文献   

5.
A norbornene-based cross-linker was synthesized and mixed at different loadings with two separate monomers for self-healing polymer applications: 5-ethylidene-2-norbornene (ENB) and endo-dicyclopentadiene (endo-DCPD). The monomer/cross-linker systems were polymerized by ring-opening metathesis polymerization (ROMP) with Grubbs' catalyst. The thermal-mechanical properties of the polymerized networks were evaluated by dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC) and the curing process was monitored by parallel plate oscillatory rheometry. The viscosities of the pre-polymer blends are shown to be adequately low for self-healing, and exhibit a high ROMP reactivity to form cross-linked networks with enhanced thermal-mechanical properties. The addition of cross-linker increases the glass transition temperature (Tg) and the storage modulus both above and below Tg. The storage modulus increase above Tg is used to estimate the molecular weight (Mc) between entanglements or cross-link sites for both ENB and endo-DCPD-based networks. The cross-linker also greatly accelerates network formation as defined by the gelation time.  相似文献   

6.
To obtain robust and thermo-stable enzyme aggregates, p-benzoquinone was used as cross-linker and bovine serum albumin (BSA) as crowding macromolecules to prepare cross-linked enzyme aggregates (CLEAs) of lipase. Effects of cross-linking time and cross-linker content on the activity, thermal stability and characteristics of enzyme aggregates were examined carefully. It was observed that when the content of p-benzoquinone was 5 mM and amount of BSA was 125% of that of lipase (w/w), the specific activity of cross-linked co-aggregates of lipase and BSA was 79.8 U mg−1, 2.44-fold of that of cross-linked enzyme aggregates of lipase without BSA. Moreover, after heat treatment for 96 h at 50 °C, the CLEAs prepared with this facile routine kept 75.18% of their initial activity, 5.01-fold more than that of the just CLEAs using glutaraldehyde. Furthermore, BSA macromolecules in lipase CLEAs enhanced the catalytic efficiency of free and just lipase CLEAs without BSA by 1.45 and 2.83 times, respectively. The proposed crosslinking technique would rank among the potential strategies for efficiently preparing robust and thermo-stable enzyme aggregates.  相似文献   

7.
The development of carbon dioxide (CO2) separation technology is crucial for mitigating global climate change and promoting sustainable development. In this study, we successfully synthesized an array of cross-linked poly(vinyl alcohol) (PVA) membranes, xALD-PEG-ALD-c-PVA, with enhanced CO2/N2 separation performance by employing dialdehyde polyethylene glycol (ALD-PEG-ALD) as a cross-linker. The formation of the cross-linked network structure not only inhibits the crystallization of PVA but also disrupts hydrogen bonding and thus increases fractional free volume of PVA chains. Under the synergistic effect of these multiple factors, the cross-linked PVA membranes exhibit a significantly improved CO2 permeability. Moreover, they maintain high CO2/N2 selectivity, attributing to the CO2-philic characteristic of ethylene oxide groups in the cross-linked structure. At the ALD-PEG-ALD content of 1.6 mmol g−1, the xALD-PEG-ALD-c-PVA membrane demonstrates a CO2 permeability of 41.4 barrer and a CO2/N2 selectivity of 57.4 at 2 bar and 25°C. Furthermore, compared with the pristine PVA membrane, xALD-PEG-ALD-c-PVA membranes manifest superior mechanical properties and outstanding separation performance for a CO2/N2 (15/85, vol%) gas mixture. The excellent combination of permeability and selectivity makes xALD-PEG-ALD-c-PVA membranes highly promising for various CO2 separation applications.  相似文献   

8.
Aqueous polymer isocyanate (API), which has good adhesive properties at ambient temperature and excellent resistance to warm/boiling water, and is friendly to the environment, is widely used in the timber-processing industry. To prepare high performance API, vinyl acetate homopolymer and copolymer emulsion were respectively cross-linked by three types of polymeric methylene diisocyanate (p-MDI). The potlife, curing time, bonding strength, and water resistance of API adhesives were tested with different cross-linkers and varying loadings (5–20%). Also the effect of polyvinyl alcohol (PVOH) content of aqueous vinyl latex on the performance of API was investigated. It was shown that the potlife and curing time of API were obviously influenced by the types of cross-linker and its loading. Correct loadings of p-MDI as crosslinker can remarkably improve the adhesive performance of aqueous polymer emulsion at ambient temperature. Excess cross-linker cannot maintain such an effect of strengthening and may decrease considerably the bond properties of API. The warm- and boiling-water resistance of API improved markedly with increasing cross-linker loading, where emulsifiable isocyanate gave better cross-linking performance, and p-MDI mixed with organic solvent was the secondbest. With the increase of PVOH content, the curing time of API increased, but no statistically apparent differences in the potlife of API were found. The bonding performance of API was improved as PVOH content increases, but excess PVOH also weakenes the warm- and boiling-water resistance of the joint.  相似文献   

9.
The paper concerns the analysis of time t eq required to equilibrium state achievement in aqueous solutions of star-shaped poly(2-isopropyl-2-oxazolines) (PiPrOx) after changing temperature. The discussed data were obtained for PiPrOx differing in arm number and length. For all samples, high t eq values, half an hour at least, were obtained because of rather high intramolecular density. The dependence t eq on temperature displayed maximum near the phase separation beginning due to the aggregate growth and redistribution of scattering particles. The maximum times t eq increased symbatically with arm number and length. The higher energy of the hydrogen bond formed by deuterium isotope leads to the growth of the t eq values as compared to solutions in H2O.  相似文献   

10.
Aqueous polymer isocyanate (API), which has good adhesive properties at ambient temperature and excellent resistance to warm/boiling water, and is friendly to the environment, is widely used in the timber-processing industry. To prepare high performance API, vinyl acetate homopolymer and copolymer emulsion were respectively cross-linked by three types of polymeric methylene diisocyanate (p-MDI). The potlife, curing time, bonding strength, and water resistance of API adhesives were tested with different cross-linkers and varying loadings (5-20%). Also the effect of polyvinyl alcohol (PVOH) content of aqueous vinyl latex on the performance of API was investigated. It was shown that the potlife and curing time of API were obviously influenced by the types of cross-linker and its loading. Correct loadings of p-MDI as crosslinker can remarkably improve the adhesive performance of aqueous polymer emulsion at ambient temperature. Excess cross-linker cannot maintain such an effect of strengthening and may decrease considerably the bond properties of API. The warm- and boiling-water resistance of API improved markedly with increasing cross-linker loading, where emulsifiable isocyanate gave better cross-linking performance, and p-MDI mixed with organic solvent was the secondbest. With the increase of PVOH content, the curing time of API increased, but no statistically apparent differences in the potlife of API were found. The bonding performance of API was improved as PVOH content increases, but excess PVOH also weakenes the warm- and boiling-water resistance of the joint.  相似文献   

11.
The kinetic characteristics and the reaction conditions of photocross-linking of low-density polyethylene (LDPE) in the melt have been studied using benzophenone (BP) and its derivatives such as 4-chlorobenzophenone (4-CBP) as photoinitiator and triallyl cyanurate (TAC) as cross-linker. The efficiency of the photoinitiated cross-linking system LDPEBP-TAC and various factors affecting the cross-linking process, such as photoinitiator and cross-linker and their concentrations, irradiation time, temperature, and atmosphere, and UV light intensity were examined extensively by determining gel content, IR, and UV spectra. It has been found (i) that LDPE samples of 2–3 mm thickness are easily cross-linked to a gel content of about 70% with a UV-irradiation time of about 15 s under optimum conditions; (ii) that the photoinitiating system of a suitable initiator combined with a multifunctional cross-linker such as 4-CBP–TAC can enhance the efficiency of photocross-linking reactions, especially by increasing the initial rate of cross-linking; (iii) that photocross-linking of LDPE should be carried out in the melt, which increases the penetration of UV light by decreasing the scattering by crystallites, and (iv) that the rate of cross-linking is proportional to the square of the light intensity. An increase in light intensity can decrease the concentration of photoinitiator required to reach a certain rate of cross-linking. The photocross-linking of polyethylene is promising for industrial applications. © 1993 John Wiley & Sons, Inc.  相似文献   

12.
Enzyme lipase catalyzed graft copolymerization of acrylic acid onto gum tragacanth was carried out in an aqueous medium using glutaraldehyde as a cross-linker, one more step towards green chemistry. Various reaction variables such as time, amount of solvent, temperature, pH, lipase concentration, and monomer and cross-linker concentrations were optimized to achieve a cross-linked candidate polymer with maximum fluid absorbance capacity. The structure and morphology were confirmed by Fourier transform infrared spectroscopy and scanning electron microscopy. The synthesized hydrogel held a large amount of water and was used as a device for controlled release of urea. A 10 % (w/w) of swelled hydrogel was found to enhance the water-holding capacity of the soil. The synthesized device could increase the moisture content up to 52 % in sandy loam soil and 72 % in clay soil and was found to enhance the water-holding capability of the soil. Further, the candidate polymer was studied for the controlled release of urea under eco-friendly conditions and showed case-II type urea release. The initial diffusion coefficient was found to be higher than the later diffusion coefficient indicating a higher urea release rate during the early stage. Thus, the synthesized polymer is important from technological point of view.  相似文献   

13.
利用化学交联法,制备了由聚乙烯吡咯烷酮(PVP)和丙烯酰胺(Am)、丙烯酸(AA)复合的具有半互穿网络(Semi-IPNs)结构的高分子水凝胶。研究了凝胶在直流电场作用下NaCl溶液中的溶胀、弯曲行为及交联剂含量、PVP含量对水凝胶的溶胀性质、拉伸强度的影响。结果表明凝胶的最大弯曲率随着时间和电场强度的增加而增大,随溶液离子浓度的增加呈现出最大值。增加PVP可以提高拉伸强度降低弯曲度,适当增加交联剂,可以加强拉伸强度108.51%,降低溶胀度68.29%。  相似文献   

14.
In this work, we sought to examine whether the presence of alkyl substituents randomly distributed within the main chain of a 2-isopropyl-2-oxazoline-based copolymer will decrease its ability to crystallize when compared to its homopolymer. At the same time, we aimed to ensure an appropriate hydrophilic/lipophilic balance in the copolymer and maintain the phase transition in the vicinity of the human body temperature. For this reason, copolymers of 2-ethyl-4-methyl-2-oxazoline and 2-isopropyl-2-oxazoline were synthesized. The thermoresponsive behavior of the copolymers in water, the influence of salt on the cloud point, the presence of hysteresis of the phase transition and the crystallization ability in a water solution under long-term heating conditions were studied by turbidimetry. The ability of the copolymers to crystallize in the solid state, and their thermal properties, were analyzed by differential scanning calorimetry and X-ray diffractometry. A cytotoxicity assay was used to estimate the viability of human fibroblasts in the presence of the obtained polymers. The results allowed us to demonstrate a nontoxic alternative to poly(2-isopropyl-2-oxazoline) (PiPrOx) with a physiological phase transition temperature (LCST) and a greatly reduced tendency to crystallize. The synthesis of 2-oxazoline polymers with such well-defined properties is important for future biomedical applications.  相似文献   

15.
In the quest on improving composite formulations for environmental sustainability, maleic acid (MA) cross-linked poly(vinyl alcohol) (PVA)-α-chitin composites reinforced by oil palm empty fruit bunch fibers (OPEFB)-derived nanocellulose crystals (NCC) had been successfully prepared. Based on the Fourier transform infrared (FTIR) spectroscopic analysis, it was proven that molecular interactions of the cross-linker to the polymeric networks was through conjugated ester linkage. Differential scanning calorimetry (DSC) showed that the influence of MA was minimal toward crystallization in the PVA/chitin/NCC composite. Maximum tensile strength, elongation at break and Young's modulus of the respective PVA/chitin/NCC composites were achieved at different content of MA, dependent on the PVA/chitin mass ratio. Among all compositions, a maximum Young's modulus was achieved at 30 wt% MA loading in PVA/chitin-30/NCC, amounting to 2,413.81 ± 167.36 MPa. Moreover, the mechanical properties and selected physicochemical properties (swelling, gel content, and contact angle) of the PVA/chitin/NCC composites could be tailored by varying the chitin content (10–30 wt%) and MA content (10–50 wt% based on total mass of composite). In brief, this chemically cross-linked PVA-based biocomposites formulated with sustainable resources exhibited tunable physicochemical and mechanical properties.  相似文献   

16.
Poly(dimethylsiloxane) (PDMS) cross-linked films with different concentrations of micrometer-sized garnet particles were prepared through hydrosilylation reaction between a di-vinyl-terminated PDMS and a four-functional silane cross-linker in the presence of a Platinum catalyst. The garnet particles, consisting of micrometer-sized Ce doped Y3Al5O12 particles commonly used on light converters (for solid state light devices, e.g. Light emitting diodes LEDs), were homogeneously and individually dispersed through the bulk of the cross-linked films for a concentration up to 20% in volume.The effect of the garnet on the cross-linking of the composite films was investigated by in-situ ATR-FTIR Spectroscopy. When formulations with an excess of cross-linker were used the overall consumption of Si-H groups of the cross-linker is slowdown in the presence of the garnet. The same effect was observed for an increasing concentration of the garnet. This effect is attributed to a strong interaction of the catalyst with the garnet during the cross-linking process. The possible origins of this interaction are discussed.NMR Imaging was used to investigate the cross-linked networks formed in the composite films. All the networks are homogeneous through the depth of the cross-linked composite films (approx. 5 μm resolution). The films prepared in the presence of the garnet particles showed similar relaxation behavior, regardless of the cross-linker concentration used in the initial formulation, contrary to previous results with PDMS cross-linked films. This behaviour is explained based on the presence of different type of chemical cross-links, resulting from the occurrence of hydrosilylation and secondary reactions, which are influenced by the interaction between the garnet particles and the catalyst.  相似文献   

17.
To develop a soy-based adhesive with good water resistance, non-toxic melamine–glyoxal resin (MG) prepared in the laboratory was used as a cross-linker of soy-based adhesive. The FT-IR and ESI-MS results showed that there was a reaction between melamine and glyoxal. The resulted –CH–OH– groups could be the possible reactive groups for the cross-linking of soy-based adhesive. The wet shear strength of soy-based plywood indicated that the water resistance of soy adhesive cross-linked by MG improved with respect to that with no cross-linker, although it was not good enough to satisfy the relative standard. With the optimized preparation procedures for plywood, specifically, press temperature 180?°C, press time 3 min and resin loading 280 g m?2, type I soy-based plywood could be prepared with a hybrid cross-linker, namely 12%MG + 2% epoxy resin (EPR). The DSC results showed that the reaction between soy-based adhesive and the hybrid cross-linker MG + EPR was very complex.  相似文献   

18.
Azobenzene-based photoswitchable compounds can be use to photocontrol a variety of biochemical systems. In some cases, their effectiveness may be limited by the size of the conformational change that the switch undergoes. To produce an azobenzene photoswitch that undergoes a large end-to-end distance change upon isomerization, we synthesized 3,3'-diazene-1,2-diylbis{6-[2-sulfonato-4-(chloroacetylamino)phenylethynyl]benzene sulfonic acid} (DDPBA). This long, rigid, water-soluble, thiol-reactive cross-linker undergoes an end-to-end distance change of approximately 13 A upon isomerization. DDPBA was successfully cross-linked to peptides through cysteine side chains. The photoswitch undergoes trans-to-cis photoisomerization maximally when irradiated at 400 nm, although the efficiency of production of the cis isomer is lower than for simpler azobenzenes. Under steady-state illumination conditions, the percentage of cis form produced increases as temperature increases; approximately 56 % cis is obtained at 60 degrees C. Thermal relaxation occurs with a half-life of approximately 75 min at room temperature. When DDPBA was attached to an alpha-helical peptide with two cysteine residues at i and i+14 positions, an increase in helix content was observed after photoirradiation. When cross-linked to another peptide with two cysteine residues spaced at i and i+21 positions, a decrease in helix content after trans-to-cis isomerization was observed. Due to the small percentage of cis form produced under the experimental conditions, the CD signal changes were small. However, the large structural change upon photoisomerization provided by this cross-linker can potentially be used to photoswitch other biochemical systems.  相似文献   

19.
Acrylate pressure sensitive adhesive (PSA) latexes were synthesized via a starved monomer seeded semi-batch emulsion polymerization process with butyl acrylate (BA), methyl methacrylate (MMA), acrylic acid (AA) and 2-hydroxyethyl acrylate (HEA). These PSA polymers were then cross-linked with trifunctional propyleneimine external cross-linker (SAC-100) to study the cross-linking reaction between carboxylic group of the polymer chain and cross-linking agent. It was found that cross-linking provided a significant influence on the film formation process based on the result of SEM analysis. In addition, with the increase of SAC-100 content, the gel content of the polymer increased significantly, while molecular weight between cross-link points (Mc) and the sol molecular weight (Mw, Mn) of the polymer decreased remarkably. The TGA result showed that the addition of the external cross-linker can enhance the thermal stability of the latex film. Moreover, for the cross-linked adhesive film, the shear strength was improved greatly while at the sacrifice of loop tack and peel strength, when compared with the uncross-linked counterparts. Besides, dynamic mechanical analysis (DMA) was also used to evaluate the viscoelastic properties of the acrylate emulsion PSA film.  相似文献   

20.
Moisture-resistant and mechanically strong polyimide (PI)-polymethylsilsesquioxane hybrid aerogels with doubly cross-linked structures are synthesized through sol–gel technology and supercritical CO2 fluid drying. By using bis(trimethoxysilylpropyl) amine as a cross-linker, the end-capped polyamide acid derived from biphenyl-3,3′,4,4′-tetracarboxylic dianhydride and 4,4′-oxydianiline is cross-linked with a silica network using methyltrimethoxysilane as the silica source precursor. The resultant hybrid aerogels show low density (0.12–0.15 g cm−3), low thermal conductivity (0.032–0.049 W m−1 K−1), high hydrophobicity (125–140°) and good thermal stability (above 435 °C) with tunable microstructure. With the increase of silica sol volume, the microstructure of hybrid aerogels transforms from fibrous network to hierarchical microstructure. Aerogels with high content of silica sol exhibit good moisture resistance, high Young's modulus (Max. 19.6 MPa), and high specific modulus (Max. 131 kN m kg−1), which are attributed to their unique hierarchical microstructure with a sheet skeleton. These hybrid aerogels are promising in the fields of thermal insulation, aerospace applications and so on.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号