首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bio‐based compounds (FmHPM and FdHPM) with a furan backbone and photo‐polymerizable 2‐hydroxypropyl methacrylate (HPM) group(s) were synthesized from carbohydrate‐derived furanyl alcohols (furan‐2‐methanol and furan‐2,5‐dimethanol) and their photo‐polymerizing behaviors and mechanical properties after photo‐polymerization were investigated. Half time values (t1/2) of bio‐based FmHPM and FdHPM were 10.4 s and 3.0 s and their shrinkage ratios were 3.0 and 6.1% during photo‐polymerization, respectively. Tensile‐shear strength of glass and polycarbonate joints bonded by bio‐based furanic compounds appeared in range of 0.2–0.6 MPa and pencil hardness of film coated by bio‐based furanic compounds after photo‐polymerization showed 2H–3H. Newly synthesized bio‐based furanic compounds allowed the feasibility to alternate petroleum‐based Bis‐GMA/TEGDMA, photo‐polymerizable composition widely utilized in a variety of applications. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

2.
Poly(butylene terephthalate-co-butylene 2,5-furandicarboxylate) copolyesters (PBTFs) were synthesized from 1,4-butanediol, dimethyl terephthalate (DMT), and 2,5-furandicarboxylic acid (FDCA) by a two-step polymerization method. Their chemical structures were confirmed by Fourier-transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, and carbon nuclear magnetic resonance before thermal properties were explored with differential scanning calorimeter and thermogravimetric analyzer. Results showed that PBTFs changed from semi-crystalline to completely amorphous when the content of FDCA unit was increased to 45 mol% at first, and then became crystallographic again with the further increment of FDCA unit to 75 mol%. For their mechanical properties, the tensile modulus and strength showed the similar trend, decreasing firstly and then increasing later. Their barrier to carbon dioxide and oxygen became better with the increasing of furan content due to the rigidity and higher polarity of furan ring. The performance of PBTFs copolyesters was investigated clearly, and the relative content of FDCA and DMT can be adjusted to satisfy different performance requirements.  相似文献   

3.
Carbonaceous microspheres formed through heterogeneous polymerization reactions during hydrothermal carbonization of biomass showed a considerable effect on the mass yield and physicochemical properties of hydrochar. In exploring the growth mechanism of carbonaceous microspheres, the heterogeneous polymerization reaction of four typical organic components (5-hydroxymethylfurfural, furfural, phenol, and p-xylene) with the surficial functional groups of carbonaceous microspheres was investigated using density functional theory (DFT). Nucleophilic addition and dehydration are the main forms of polymerization reactions, and the former shows a lower reaction energy barrier than the latter by 100 kJ/mol, indicating that the nucleophilic addition reactions likely occur compared to dehydration reactions. And phenol likely promotes the growth of microspheres. In addition, the surficial furan ring structure of carbonaceous microspheres opened through ring opening, hydrogen atom transfer, and molecular space structure conversion in sequence. Among these reaction steps, the furan ring opening through hydration was the rate-limiting reaction step, which showed the highest energy barrier with a value of 394.51 kJ/mol. However, the ring opening of furan rings could form more active sites, such as carbonyl groups, for subsequent polymerization reactions, indicating an increased potential for further reactions with aqueous-phase organic components.  相似文献   

4.
设计了一种新型呋喃树脂。经过试验确定了新型树脂的合成工艺。并用该树脂与固化剂,惰性添料配制成胶黏剂,测试其常温、热处理及腐蚀后的胶的力学性能、腐蚀率及胶化时间。测试结果表明:该树脂胶具有良好的耐酸耐碱性能。通过性能比较,可以得出如下结论:自制的呋喃树脂胶已接近或超过了国内外呋喃系列树脂胶的性能。可以代替这些胶用于化工防腐施工上。试验证明采用新的配料操作步骤,避免了爆聚现象的发生,改善了施工性能。  相似文献   

5.
Conjugated polymers are among the most promising organic materials for opto‐electronic devices. In such applications, the main fabrication problem is to get uniform, defect‐free, and reproducible thin films of these materials. In this investigation, an RF plasma reactor was used to produce cross‐linked organic thin films from benzene and furan precursors. Uniform thin films of desired thickness were fabricated using this plasma polymerization technique. The composition of the plasma‐polymerized films was determined with X‐ray photoelectron spectroscopy. Fourier transform infrared spectra of the monomers and plasma‐polymerized thin films prepared were compared to analyze the chemical structure of the films. Ultraviolet–visible absorption spectroscopy shows a red shift of 45 nm in λmax for the case of plasma‐polymerized benzene films and 52 nm in the case of plasma‐polymerized furan films when compared to their respective monomer spectra. Photo luminescence spectra of these films show a blue emission with a broad peak at 460 nm for the plasma‐polymerized benzene films and 445 nm for the plasma‐polymerized furan films. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 523–528, 2003  相似文献   

6.
Crosslinked self‐healing polyurethane/urea based on a Diels–Alder reaction (C‐PMPU–DA) was synthesized from a multiple‐furan monomer and a commercial bismaleimide. The multiple‐furan monomer (PMPU–furan) was obtained from a functionalized prepolymer (polymeric MDI: PBA‐2000 = 2:1) by furfuryl amine. The structures of both the PMPU–furan and C‐PMPU–DA were characterized by attenuated total reflectance (ATR)–Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and 1H‐NMR. The Diels–Alder bonds enabled C‐PMPU–DA thermal reversibility, which was investigated by ATR–FTIR spectroscopy, 1H‐NMR, gel–solution–gel experiments, and viscosity tests. Meanwhile, the self‐healing properties of C‐PMPU–DA were also investigated by the recovery of the mechanical properties. The results showed that C‐PMPU–DA exhibited good thermal reversibility and self‐healing properties. C‐PMPU–DA exhibited thermosetting properties at room temperature, although it exhibited thermoplastic properties at higher temperatures and may find applications in self‐healing materials, recyclable materials, or removable materials. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40234.  相似文献   

7.
Summary Poly(3-vinyl furan) was synthesized in bulk by free radical initiation. The polymerization was quite sluggish with long polymerization times resulting in relatively low yields of product. The 75.5 MHz 13C-NMR spectrum could be analyzed in terms of stereochemistry even though signal/noise ratios were not optimum. The analysis indicates that poly(3-vinyl furan) (3VF), synthesized by free radical initiation, is an atactic polymer.  相似文献   

8.
Interfacial polymerization is used to prepare biobased furan polyamides from the carbohydrate‐derived monomer, 2,5‐furan dicarboxylic acid, aromatic diamines, and varying chain length aliphatic diamines. The molecular weights of the furan polyamides variations range 10,000–70,000 g/mol. These biobased polyamides have improved solubility relative to petroleum‐derived polyamides affording enhanced processability options. The glass transition temperatures (Tg) of the biobased furan polyamides are higher than that of aliphatic analogs, but lower than phenyl‐aromatic analogs. The Tg for these furan polyamides are as high as 280 °C. Also, the furan polyamide glass transition temperatures increase with decreasing aliphatic diamine chain length similar to results exemplified in petroleum‐based nylons. Group contribution parameters are determined for furans to enable simple prediction of the glass transition temperature and decomposition temperature of furan polyamides. The molar glass transition function for the furan is calculated to be 27.6 ± 1.5 K kg/mol. Thermal analysis measurements of the biobased furan polyamides have maximum thermal degradation temperatures at 350 °C or higher, similar to that of aliphatic polyamides when scaled with the number average molecular weight. The molar decomposition temperature functions are determined to be 37 K kg/mol for furans bonded to aliphatic units and 42 K kg/mol for furans bonded to phenyl units. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45514.  相似文献   

9.
High yield oxidative polymerization of furan was accomplished in CHCl3 solvent at 0 °C. A nanocomposite of polyfuran (PF)–Al2O3 was prepared through polymerization of furan in a suspension of nanodimensional Al2O3 in CHCl3 at 0 °C. High yield polymerization of furan was also achieved in montmorillonite clay (MMT) without any extraneous oxidant. The formation of PF was confirmed by FTIR and elemental analysis. Thermogravimetric analyses revealed the following trends in thermal stability: PF < PF–Al2O3 < Al2O3 and PF < PF–MMT < MMT. Scanning electron microscopy showed the average particles sizes to be ca 51 nm and ca 40 nm for PF–Al2O3 and PF–MMT composites, respectively. The occurrence of a peak at 19.84 Å in the X‐ray diffraction pattern of the PF–MMT composite was indicative of the intercalation of PF in MMT lamellae. Transmission electron microscopic analyses for the PF–MMT composite also showed incorporation of PF moieties in‐between the MMT layers. The dc conductivity values (S cm?1) of PF–FeCl3, PF–Al2O3–FeCl3, PF–MMT and PF–MMT–FeCl3 systems were in the order of 10?6, 10?7, 10?8 and 10?7, respectively, and the values were significantly enhanced compared to the dc conductivity value of PF homopolymers (10?11). Copyright © 2004 Society of Chemical Industry  相似文献   

10.
In this review, an overview is given on the last development of catalytic methods for the preparation of substituted furans from carbohydrates and ensuing polymers. The review starts with the recent aspects in the synthesis of some key furan monomers in the presence of solid catalysts. In the second part, selected examples are given of polymerization systems leading to furan-based materials with promising properties, thus constituting a serious alternative to petroleum-based counterparts. Finally, a short examination is given on what could be the future of furan chemistry with the recent development of ionic liquids as solvents.  相似文献   

11.
A furan/epoxy blend applicable to composite manufacture was studied and corresponding basalt fiber‐reinforced composites were prepared. The processability, mechanical properties, and reasons for the improved mechanical properties of this blend were investigated by rheology machine, mechanical testing machine, and scanning electron microscopy. With excellent processability, furan/epoxy was suitable for manufacturing composites. Furan/epoxy with the ratio of 5/5 showed the best properties, and the impact strength, flexural strength and flexural modulus were 15.43 kJ/m2, 102.81 MPa, and 3209.40 MPa, respectively. The river‐like fracture surface of the furan/epoxy system was well consistent with the mechanical properties. The mechanical and anti‐corrosive properties of basalt fiber‐reinforced furan/epoxy composites were also studied. The mechanical properties of composites changed the same as those of furan/epoxy matrix did. Furan resin effectively improved the anti‐acid but not anti‐alkali property of composites, probably because furan could be cured in acidic condition and basalt fiber was resistant to acid and alkali. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44799.  相似文献   

12.
Various conflicting reports in the literature regarding the effect of oxygen on the stability of vinyl acetate (VA) toward polymerization led us to reexamine this topic using both isothermal stability tests and quasi-adiabatic calorimetry. Both commercial VA stabilized with 5–20 ppm by weight of hydroquinone (HQ) and purified, unstabilized VA exhibit lower stability to thermally initiated polymerization (at 50–120°C) in the presence of oxygen than in its absence. However, when stabilized with 3–5 ppm of HQ, both air-saturated and oxygen-free VA exhibit adequate thermal stability at normal transport and storage temperatures (25–50°C). Oxygen destabilization of VA is probably caused by the relatively low stability of VA polyperoxide rather than by the oxidation of acetaldehyde impurity to peroxyacetic acid. The length of VA polymerization induction periods is about ?0.4 order in oxygen partial pressure.  相似文献   

13.
Composite polysulfone hollow fibers consisting of a polysulfone porous substrate coated with crosslinked polyethyleneimine (PEI) or furan resin are reported. These composite hollow fibers are analogous to the flat-sheet composite membranes known as NS-100 and NS-200. The surface structure of the porous substrate was rigorously studied before and after coating. Scanning electron microscope observations and reverse osmosis transport studies showed that the support fiber must have surface pore diameters of less than 0.2 μm to obtain a durable composite hollow fiber membrane. The curing process would normally follow in situ condensation of the PEI or the cationic polymerization of the furfuryl alcohol. However, since both the dense layer and surface of the porous substrate contract when exposed to the curing temperature (110–150°C), it was found to be profitable to cure the hollow fiber before applying the coating. When tested in a reverse osmosis rig, PEI/TDI-coated polysulfone hollow fiber bundles displayed 98% salt rejection and a flux of 5–7 gfd for a feed solution of 10,000 ppm NaCl at a hydraulic pressure of 400 psi. A new method of depositing furan resin on the polysulfone hollow fiber is described. The furfuryl alcohol is instantaneously polymerized by exposing the alcohol-soaked fiber to a 60% solution of concentrated sulfuric acid. It has been demonstrated that in such a polymerization procedure a dense, semipermeable layer is formed on top of the porous substrate; the resulting composite hollow fiber membrane yields salt rejections higher than 98% when tested under the above reverse osmosis conditions.  相似文献   

14.
采用溶液法制备了呋喃/环氧树脂/胺类固化剂的共混物。采用粘度测试仪、DSC、FT-IR、力学测试仪、SEM对共混体系的加工性、固化反应机理及固化后样品的力学性能及机理进行了研究。研究结果揭示了共混体系的固化反应机理,发现在共混体系中呋喃树脂与部分环氧树脂可以在180℃附近反应,剩余部分环氧树脂需要在更高的温度下才能进一步完全反应。共混体系具有优异的力学性能,且随着共混体系中环氧树脂含量的增多在逐渐升高,其中弯曲强度最高达到113 MPa,弯曲模量最高达到4129 MPa,冲击强度最高达到19.1kJ/m~2。对冲击断口形貌进行观察,发现共混体系浇铸体具有相分离结构是性能优异的主要原因。  相似文献   

15.
Induction of apoptosis is a promising strategy that could lead to the discovery of new molecules active in cancer chemotherapy. This property is generally observed when cells are treated with agents that target microtubules, dynamic structures that play a crucial role in cell division. Small molecules such as benzo[b]furans are attractive as inhibitors of tubulin polymerization. A new class of inhibitors of tubulin polymerization based on the 2-(3',4',5'-trimethoxybenzoyl)benzo[b]furan molecular skeleton, with the amino group placed at different positions on the benzene ring, were synthesized and evaluated for antiproliferative activity, inhibition of tubulin polymerization, and cell-cycle effects. The methoxy substitution pattern on the benzene portion of the benzo[b]furan moiety played an important role in affecting antiproliferative activity. In the series of 5-amino derivatives, the greatest inhibition of cell growth occurred if the methoxy substituent is placed at the C6 position, whereas C7 substitution decreases potency. The most promising compound in this series is 2-(3',4',5'-trimethoxybenzoyl)-3-methyl-5-amino-6-methoxybenzo[b]furan (3 h), which inhibits cancer cell growth at nanomolar concentrations (IC(50) =16-24 nM), and interacts strongly with tubulin by binding to the colchicine site. Sub-G(1) apoptotic cells in cultures of HL-60 and U937 cells were observed by flow cytometric analysis after treatment with 3 h in a concentration-dependent manner. We also show that compound 3 h induces apoptosis by activation of caspase-3, -8, and -9, and this is associated with cytochrome c release from mitochondria. The introduction of an α-bromoacryloyl group increased antiproliferative activity with respect to the parent amino derivatives.  相似文献   

16.
We have investigated thermal and mechanical properties of bio-based furan polyamides and petroleum-based nylons with atomistic simulations. Glass transition temperatures estimated from a series of simulations at different temperatures were in good agreement with experimental measurements. Stress–strain relationships under uniaxial deformation conditions were also obtained and analyzed. Overall, polymers with smaller repeat units exhibited slightly higher glass transition temperatures and elastic moduli, which were attributed to higher cohesive energy densities. Furan polyamides displayed higher van der Waals cohesive energy densities and maintained more rigid planar structures near furan rings compared to nylons. As a result, bio-based furan polyamides showed higher glass transition temperatures and comparable mechanical properties despite having overall weaker hydrogen bonding than nylons.  相似文献   

17.
A ketal group in a furyl position affords arene oxides from γ‐alkynylfurans even with the simple gold(III) chloride (AuCl3) catalyst. These can either undergo Diels–Alder reactions, isomerise to stable oxepines by an oxygen‐walk reaction or by the addition of water selectively be converted to phenols which differ in the position of the hydroxy group from the normal phenols formed in the gold‐catalysed phenol synthesis. With a phenyl substituent on the furan, the 2‐hydroxymethylpyridinato‐gold(III) complex, not the usual arene oxide but an oxepine is obtained, still the arene oxide can be trapped from the valence‐tautomeric equilibrium by a Diels–Alder reaction.  相似文献   

18.
Summary 2-Propenylfuran was polymerized by trifluoroacetic acid in various solvents. The reactions were accomplished over the temperature range of -78 to 70°C depending on the solvent used. The kinetics of the polymerization in CCl4 at 0°C was second order. It was observed that the 2,5-disubstituted furan moiety in the chain grows as the dielectric constant of the solvents decreases and that the percentage of alkylated furan ring in the polymer increases with temperature independently from the solvent used. Both findings are explained by considering the possibility of 2-propenylfuran to propagate either by the C-5 position of the furan ring or by the vinyl bond.  相似文献   

19.
Dynamic mechanical analysis is performed on polybenzoxazines from acetylene-terminated benzoxazine monomers, and glass transition temperatures of these polybenzoxazines are found in the range of 329–368°C. It has been identified that the high glass transition temperature and high thermal stability are due to polymerization of the acetylene terminal group, in addition to oxazine ring polymerization through a comparison study with analogous polybenzoxazines that are obtained from monomers without an acetylene functional group. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 857–862, 1999  相似文献   

20.
Linear polyurethane was synthesized by Diels–Alder (DA) reaction between a polyurethane prepolymer end-capped with furan rings (MPF) and bismaleimide (BMI). The polymerization kinetics were studied following a preliminary kinetic study of the DA reaction between furfuryl alcohol (FA) and BMI compounds by attenuated total reflection infrared, ultraviolet–visible and in situ 1H NMR spectroscopies, where in situ 1H NMR spectroscopy was selected as the analytical method of choice to study the DA reaction between MPF and BMI. The results showed that the reaction followed second-order kinetics, and the most beneficial experimental conditions to maximize conversion were identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号