首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A series of epoxidized‐soybean oil (ESO) with different epoxyl content were synthesized by in situ epoxidation of soybean oil (SBO). The acrylated epoxidized‐soybean oil (AESO) was obtained by the reaction of ring opening of ESO using acrylic acid as ring opener. The acrylated expoxidized‐soybean oil‐based thermosets have been synthesized by bulk radical polymerization of these AESOs and styrene. The thermal properties of the resins were characterized by differential scanning calorimetry (DSC) and thermo‐gravimetric analysis (TG). The results showed that these resins possess high thermal stability. There were two glass transition temperature of each resin due to the triglycerides structure of the resins. The tensile strength and impact strength of the resins were also recorded, and the tensile strength and impact strength increased as the iodine value of ESO decreased. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
采用环氧大豆油和有机蒙脱土复合改性酚醛树脂以提高材料的力学性能。环氧大豆油可通过醚键接枝在酚醛树脂上,向树脂中引入柔性长链来提高树脂韧性;蒙脱土可通过聚合插层,在树脂中形成“网—点”结构,从而大幅提高材料的力学性能。研究结果表明,环氧大豆油的加入量为40 %(质量分数,下同)时,能使酚醛树脂的冲击强度提高72 %,弯曲强度可达到94 MPa,断裂伸长率为4.5 %。在此基础上,有机蒙脱土的加入量为2 %时,材料的冲击强度可提高42.2 %,弯曲强度为111 MPa,断裂伸长率为5.6 %,拉伸强度为30.8 MPa。综合比较,加入40 %的环氧大豆油,2 %的有机蒙脱土对材料力学性能改善效果最佳。  相似文献   

3.
赵永青  陈福泉  冯彦洪  瞿金平 《化工学报》2014,65(10):4197-4202
聚乳酸(PLA)与环氧大豆油(ESO)经熔融共混制得具有高韧性的PLA/ESO共混物,并研究了ESO含量对PLA微观形态、力学和流变性能的影响规律。结果表明:ESO可显著降低PLA的熔体黏度,提高PLA的韧性;PLA/ESO共混物在低ESO含量(10%)时为部分相容,而在高ESO含量(20%和30%)时发生了相分离,从而使共混物的断裂伸长率和冲击强度随ESO含量增加先增大后减小,且分别在ESO含量为20%和15%时达到最大值,约为PLA的17倍和2.9倍,而拉伸强度则随之减小。  相似文献   

4.
Conventional epoxy resin (DGEBA), in varying proportion, was used to modify epoxidized soybean oil (ESO) based systems, crosslinked by phthalic anhydride. The properties of DGEBA modified ESO systems were investigated by dynamic mechanical analysis, impact testing, tensile and flexural testing, scanning electron microscopy, and thermogravimetric analysis. Single loss factor tan δ peak was obtained for all of the modified systems. The results show the improvement in mechanical properties from their high crosslinking densities through the introduction of DGEBA with increase in initial degradation temperature, as obtained from thermogravimetric analysis. Results approaches to an ideal composition which gives the optimum property. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

5.
《Polymer Composites》2017,38(5):884-892
A systematic study was performed to describe the effect of epoxidized soybean oil (ESO) on storage modulus, glass transition temperature (T g) and mechanical properties in epoxy resin composites reinforced by jute fabric. In addition to aromatic diglycidylether of bisphenol‐A (DGEBA) resin, a glycerol (GER)‐and a pentaerythritol (PER)‐based aliphatic resin was applied as base resin, which can be also synthesized from renewable feedstock. Based on strip tensile test results, the usual alkali treatment of jute fabric was avoided. By increasing the ESO‐content in aliphatic composites the T g increases, whereas in case of DGEBA, it decreases. The results indicate that although ESO has a significant softening effect, the jute fiber‐reinforced DGEBA composite can be replaced without significant compromise in mechanical properties by a potentially fully bio‐based composite consisting of 25 mass% ESO‐containing aliphatic PER‐reinforced by jute fibers. POLYM. COMPOS., 38:884–892, 2017. © 2015 Society of Plastics Engineers  相似文献   

6.
合成了三种环氧大豆油低聚物作为室温和高温固化环氧树脂增韧剂,对其增韧环氧体系的粘接性能和力学性能进行了考察。试验结果表明,环氧树脂低聚物对固化体系的初期粘度等性能没有影响,对固化体系粘接性能和力学性能等有较大影响。与未改性的环氧树脂相比,由顺丁烯二酸酐扩链的环氧大豆油低聚物改性的环氧树脂剪切强度提高了56.64%。  相似文献   

7.
Thermosetting resins were synthesized by the partial replacement of the synthetic epoxy prepolymer based on diglycidyl ether of bisphenol A (DGEBA) with increasing amounts of epoxidized soybean oil (ESO) with methyltetrahydrophthalic anhydride as a crosslinking agent and 1‐methyl imidazole as an initiator. Calorimetric studies showed a drop in the reaction heat with ESO content; this was associated with the lower reactivity of oxirane rings in ESO due to steric constrains. The effects of the replacement of increasing amounts of synthetic DGEBA with ESO on the network properties, such as the storage modulus (E′) in the glassy and rubbery regions, glass‐transition temperature (Tg), and impact and compressive properties were examined. All formulations were transparent, although phase‐separated morphologies were evidenced by scanning electron microscopy observations. The intensity of the transmitted light passed to a minimum at a short reaction time associated with the cloud point and then increased continuously until the refractive index of the dispersed phase approximated that of the continuous phase at complete conversion. The combination of DGEBA with 40 wt % ESO resulted in a resin with an optimum set of properties; E′ in the glassy state was 93% of that of the neat DGEBA resin, Tg decreased only about 11°C, and the impact strength increased about 38% without a loss of transparency. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
Epoxidized soybean oil (ESO)/diglycidyl ether of bisphenol A (DGEBA) in various blend ratios (i.e. 100/0, 90/10, 80/20, 70/30, 60/40, 50/50) was thermally cured using methylhexahydrophthalic anhydride in the presence of 2‐ethyl‐4‐methylimidazole catalyst. The tensile properties and fracture toughness of the ESO/DGEBA thermoset blends were determined. Thermal properties of the blends were characterized using dynamic mechanical analysis, differential scanning calorimetry and thermogravimetric analysis. Blending of ESO and DGEBA gave synergistic effects on the modulus, strength, glass transition temperature and thermal stability. However, the fracture toughness and elongation at break of ESO/DGEBA blends are lower than those of ESO, as expected. The enhancement in certain mechanical and thermal properties of ESO/DGEBA can be associated with the crosslink density, gel content and possible interpenetrating network of the resulting thermoset blends. © 2013 Society of Chemical Industry  相似文献   

9.
This work was aimed at studying the effects of incorporation of epoxidized soybean oil (ESO) in a standard bisphenol A‐type epoxy resin (EP) cured by anhydride hardener. The EP/ESO ratio was set for 100/0, 75/25, 50/50, 25/75, and 0/100 (wt%/wt%). The investigations performed covered the curing, rheology (gelling), thermomechanical (TMA), and thermogravimetric analysis (TGA) of the EP/ESO compositions. The results showed that the dilution of EP with ESO was accompanied with marked changes in the curing, gelling behavior, and final properties. Differential scanning calorimetry revealed that the crosslinking of EP/ESO ≥ 50/50 occurred in two steps. This has been considered for the cure schedule set. The gel time of EP/ESO, determined at T = 100, 120, 140°C, respectively, increased with increasing ESO content. The activation energy of gelling increased with increasing ESO content. The glass transition temperature decreased with increasing ESO content. The samples were transparent that was traced to the presence of domains smaller in size than the wavelength of the visible light based on atomic force microscopy inspection. According to TMA, the coefficient of thermal expansion in the glassy state increased with increasing ESO content but was independent of the latter in the rubbery stage. TGA indicated that with increasing ESO content the thermal degradation started earlier and the char yield decreased. The Ozawa, Flynn, and Wall (OFW) approach was adapted to TGA tests to calculate the activation energy of thermal degradation. The activation energy depended on the ESO content of the EP/ESO blends and also on their actual decomposition stage. The latter means a limitation for the OFW approach. POLYM. ENG. SCI., 54:747–755, 2014. © 2013 Society of Plastics Engineers  相似文献   

10.
Di‐hydroxylated soybean oil (DSO), a biobased polyol synthesized from epoxidized soybean oil (ESO) could be used to formulate resins for adhesives; however, current DSO synthesis requires harsh reaction conditions that significantly increase both cost and waste generation. In this paper, we investigate the kinetics of oxirane cleavage in ESO to DSO by water and elucidate the role of different process parameters in the reaction rate and optimization of reaction conditions. Our kinetic study showed that ESO oxirane cleavage was a first‐order reaction and that the ESO oxirane cleavage rate was greatly influenced by tetrahydrofuran (THF)/ESO ratio, H2O/ESO ratio, catalyst content, and temperature. Optimized reaction parameters were THF/ESO of 0.5, H2O/ESO of 0.25, catalyst content of 1.5 %, and reaction time of 3 h at 25 °C. DSO with hydroxyl value of 242 mg KOH/g was obtained under these conditions. We also characterized the structure, thermal properties, adhesion performance, and viscoelasticity of UV‐polymerized resins based on this DSO. The resin tape exhibited peel adhesion strength of 3.6 N/in., which is comparable to some commercial tapes measured under similar conditions.  相似文献   

11.
Novel bio-based nanocomposites were prepared by blending surface modified natural clay with epoxidized soybean oil (ESO) and cyanate ester resin (CE). A convenient method was employed to modify the attapulgite (ATT) clay by adsorbing the poly(ethylene glycol) diglycidyl ether (PEGDE) onto the clay surface, which was confirmed by the appearance of a new peak of infrared spectroscopy due to hydrogen bonding and chelation. Thermogravimetic analysis (TGA) showed that the amount of PEGDE adsorbed on ATT was influenced by PEGDE concentration in acetone solution. Scanning electron microscope (SEM) and transmission electron microscope (TEM) results showed that nanoscaled ATT dispersed well in the blend of epoxidized soybean oil (ESO) before and after curing. The thermal-physical and mechanical properties were evaluated by dynamic mechanical analysis (DMA), TGA and tensile mechanical test. The nanocomposites showed higher glass transition temperature and modulus, and the tensile strength of the nanocomposites was reinforced as compared to that of ESO/CE blends.  相似文献   

12.
As a new biobased epoxy resin system, epoxidized soybean oil (ESO) was cured with tannic acid (TA) under various conditions. When the curing conditions were optimized for the improvement of the thermal and mechanical properties, the most balanced properties were obtained when the system was cured at 210°C for 2 h at an epoxy/hydroxyl ratio of 1.0/1.4. The tensile strength and modulus and tan δ peak temperature measured by dynamic mechanical analysis for the ESO–TA cured under the optimized condition were 15.1 MPa, 458 MPa, and 58°C, respectively. Next, we prepared biocomposites of ESO, TA, and microfibrillated cellulose (MFC) with MFC contents from 5 to 11 wt % by mixing an ethanol solution of ESO and TA with MFC and subsequently drying and curing the composites under the optimized conditions. The ESO–TA–MFC composites showed the highest tan δ peak temperature (61°C) and tensile strength (26.3 MPa) at an MFC content of 9 wt %. The tensile modulus of the composites increased with increasing MFC content and reached 1.33 GPa at an MFC content of 11 wt %. Scanning electron microscopy observation revealed that MFC was homogeneously distributed in the matrix for the composite with an MFC content of 9 wt %, whereas some aggregated MFC was observed in the composite with 11 wt % MFC. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
In this study, bio‐based epoxy materials containing functionalized plant oil, such as epoxidized soybean oil (ESO) and epoxidized linseed oil (ELO), were processed with 4‐methylhexahydrophthalic anhydride (MHPA) as a curing agent. In the presence of tetraethylammonium bromide, the curing reaction of epoxidized plant oil and MHPA proceeded at 130 °C to give transparent plant oil‐based epoxy materials. The resulting bio‐based epoxy materials exhibited relatively soft and flexible characters, due to the aliphatic chains of plant oil. The thermal and mechanical properties of the ESO/MHPA polymers depended on the feed molar ratio of anhydride to oxirane. The mechanical properties such as tensile strength and Young's modulus of the ELO/MHPA polymer increased, compared with those of the ESO/MHPA polymer. The glass transition temperature of the ELO/MHPA polymer was higher than that of the ESO/MHPA polymer, because of the high oxirane number of ELO. Furthermore, the ELO/MHPA polymer showed excellent shape memory property.  相似文献   

14.
以环氧大豆油(ESO)为环氧树脂(EP)的增塑剂、环氧氯丙烷(ECH)和丙烯腈(AN)改性己二胺为固化剂,制得ESO改性EP胶粘剂。探讨了增塑剂种类和含量对EP胶粘剂性能的影响。结果表明:当n(己二胺):n(ECH):n(AN)=1:0.3:1.5、w(ESO)=20%时,相应EP胶粘剂的剪切强度、断裂伸长率和外推起始温度分别比纯EP体系增加了10%、400%和20%;ESO是一种高增韧性、高耐热性的环保型增塑剂,相应EP胶粘剂的透明性、柔韧性和耐高(低)温性俱佳。  相似文献   

15.
通过考察催化剂用量、反应温度及反应时间、氧化剂等因素对环氧葵花籽油产率的影响,确定了较适宜的反应条件.在此反应条件下产品产率大于90%.考察了环氧化葵花籽油含量对环氧树脂/环氧葵花籽油共混物冲击强度的影响.结果表明,当环氧化葵花籽油的质量分数为30%时,共混物的冲击强度比纯环氧树脂提高了60%.  相似文献   

16.
Some exploratory work was done to look at novel applications, such as filler use and comonomers, for lignin in thermosetting unsaturated polyesters and vinyl esters. The solubility of different lignins (pine kraft, hardwood, ethoxylated, and maleinated) was determined in different resin systems (acrylated epoxidized soybean oil, hydroxylated soybean oil, soy oil monoglyceride, and a commercial vinyl ester) to give an idea of the compatibility of lignin with the resin systems that were used. Further, the use of lignin as a filler was studied. An increase in the glass‐transition temperature was noticed, and the modulus at 20°C decreased because of the plasticizing effect of lignin. The lignin was modified to improve its effect on the matrix properties by adding double bond functionality, thus making it possible to incorporate the lignin molecule in the resin through free‐radical polymerization. Modified lignin was introduced in several resins by a reaction with maleic anhydride and epoxidized soybean oil and was tested for its effect on the solubility, glass‐transition temperature, and modulus. This modification improved the solubility of lignin in styrene‐containing resins, as well as the chemical incorporation of lignin in the resin. Moreover, lignin was used to treat the surfaces of natural hemp fibers to utilize lignin's natural affinity for cellulosic fibers. The idea was to cure the surface defects on the natural fibers and increase the bonding strength between the resin and fiber. An optimum improvement was noticed that depended on the amount of lignin covering the fibers. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 323–331, 2002  相似文献   

17.
ABSTRACT

Unmodified epoxy resins based on bisphenol A exhibit brittleness and low elongation after cure. This article reports the results of a study for improving the properties of epoxy resin by blending with suitable thermosets. Hybrid polymer networks of diglycidyl ether of bisphenol A (DGEBA) resin with epoxidized phenolic novolac resins (EPN) containing phenol and formaldehyde in different stoichiometric ratios were prepared by physical blending. The modified epoxy resins were found to exhibit improved mechanical and thermal properties compared to the neat resin. DGEBA resins containing 2.5 to 20 wt% of epoxidized novolac resins (EPN) prepared in various stoichiometric ratios (1:0.6, 1:0.7, 1:08, and 1:0.9) between phenol and formaldehyde were cured using a room temperature amine hardener. The cured samples were tested for mechanical properties such as tensile strength, modulus, elongation, and energy absorption at break. All the EPNs are seen to improve tensile strength, elongation, and energy absorption at break of the resin. The blend of DGEBA with 10 wt% of EPN-3 (1:0.8) exhibits maximum improvement in strength, elongation, and energy absorption. EPN loading above 10 wt% is found to lower these properties in a manner similar to the behavior of any filler material. The property profiles of epoxy–EPN blends imply a toughening action by epoxidized novolac resins and the extent of modification is found to depend on the molar ratio between phenol and formaldehyde in the novolac.  相似文献   

18.
Biobased neat epoxy materials containing functionalized vegetable oils (FVO), such as epoxidized linseed oil (ELO) and epoxidized soybean oil (ESO), were processed with an anhydride curing agent. A percentage of diglycidyl ether of bisphenol F (DGEBF) was replaced by ELO or ESO. The selection of the DGEBF, FVO, and an anhydride‐curing agent resulted in an excellent combination to produce a new biobased epoxy material having a high elastic modulus and high glass transition temperature. Izod impact strength and fracture toughness were significantly improved dependent on FVO content, which produced a phase‐separated morphology. POLYM. ENG. SCI., 45:487–495, 2005. © 2005 Society of Plastics Engineers  相似文献   

19.
A potentially inexpensive alternative epoxy resin system based on soybean oil has been developed for polymer composite applications. Epoxidized methyl soyate (EMS) and epoxidized allyl soyate (EAS) have been synthesized at the University of Missouri–Rolla. These materials consist of mixtures of epoxidized fatty acid esters. The epoxidized soy‐based resins provide better intermolecular crosslinking and yield materials that are stronger than materials obtained with commercially available epoxidized soybean oil (ESO). The curing behavior and glass transition have been monitored with differential scanning calorimetry. Neat resin test samples have been fabricated from resin systems containing various amounts of EMS, EAS, and ESO. Standardized tests have shown that the addition of EAS enhances the tensile and flexural properties of the base epoxy resin system. Therefore, epoxidized soy ester additives hold great potential for environmentally friendly and lower cost raw materials for the fabrication of epoxy composites for structural applications. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3513–3518, 2004  相似文献   

20.
Epoxy resin matrix based on diglycidyl ether of bisphenol A (DGEBA) was modified with addition of epoxidized soybean oil (ESBO). Structural jute composites prepared with ESBO modified DGEBA resin showed a decrease in tensile strengths, owing to reduced cross linking density. Percentage elongation of the samples increased with addition of ESBO. An optimized composition was identified, at which the composite showed increase in tensile strength, modulus and elongation. Interestingly, impact strengths increased initially with incorporation of ESBO, but with further increase in ESBO, impact strengths decreased. Structural Jute composites were also prepared by incorporating polyvinyl (chloride) (PVC) plastisol into the modified matrix which showed an increase in both tensile and impact strengths. Fourier transform infrared spectroscopy (FT‐IR) analysis indicated the curing state of the composites. The spectrum peaks became increasingly stronger in the O H band with increasing ESBO quantities. This could be attributed to the hydrophilic nature of ESBO, a result that was well supported by the moisture absorption test. Although, water uptake capacity of ESBO/DGEBA modified matrix composites recorded increasing trend with increased ESBO content, with inclusion of plastisol, the water uptake values dropped. Composite with DGEBA/ESBO/plastisol modified matrix actually recorded water uptake capacity comparable to composite with neat DGEBA, possibly owing to improved interfacial adhesion and hydrophobic nature of PVC plastisol. POLYM. COMPOS., 37:391–397, 2016. © 2014 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号