首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study reports a facile and sustainable approach to fabricate superhydrophobic coating from eggshell biowaste. The coating was prepared by ball milling chicken eggshells, composed of hydrophilic calcium carbonate (CaCO3), to microsized particles followed by surface hydrophobilizing with stearic acid (C17H35COOH) to form low surface energy nanosized calcium stearate ((C17H35COO)2Ca) through the esterification of hydroxyl groups (-OH) absorbed on a surface of CaCO3 with carboxyl groups (–COOH) of stearic acid. Then, a layer of modified eggshell particles dispersed in polystyrene (PS) binder was dip-coated on a substrate. A coated surface with water contact angles of 151° ± 1° on glass and 153° ± 1° on cotton fabric substrates was achieved when a 4:1 weight ratio of the modified eggshell:PS was used. The uniform distribution of the modified eggshell particles throughout the coating led to a surface with high degree of hierarchical micro-nanoscale roughness which resulted in superhydrophobicity. The superhydrophobic eggshell coating showed good environmental stability, self-cleaning, and oil/water separation properties. These results suggest that eggshell biowaste can be utilized for superhydrophobic applications.  相似文献   

2.
In this study, cotton fabric was successfully modified to have an antibacterial property through use of the sol–gel process. Dodecanethiol‐capped silver nanoparticles, which have powerful antibacterial activity, were incorporated in silica sol. The starting materials were silver nitrate, tetraoctylammonium bromide, sodium borohydride, chloroform, 1‐dodecanethiol, ethanol, tetraethylorthosilicate, and water. The cotton fabric was padded with dodecanethiol‐capped silver nanoparticle–doped sol, dried at 60°C, and cured at 150°C. Scanning electron microscopy showed a uniform and continuous layer of doped sol on the fiber surface. The antibacterial effects of the treated cotton fabric against Escherichia coli were examined and found to be excellent. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101:2938–2943, 2006  相似文献   

3.
朱炯霖 《精细化工》2020,37(6):1274-1281
以植物还原剂——金银花提取物和化学还原剂——丙三醇,分别还原硝酸银,制备了两种纳米银溶液。采用浸渍法将上述制备的纳米银溶液分别对棉织物进行功能整理。利用SEM、EDS、XRD、FTIR分析整理前后棉织物的外观形貌及结构,并探讨了整理后的棉织物的抗紫外性能、不同洗涤次数后其含银量、色差和抗菌性能的变化。结果表明,纳米银粒子主要通过范德华力吸附在棉织物纤维素的无定形区;与化学还原法相比,植物还原法制备的纳米银粒径减小了约15nm,植物还原法制备的纳米银溶液整理后的棉织物经过50次洗涤后,棉织物表面的纳米银吸附量及色差变化不大,且对大肠杆菌和金黄色葡萄球菌的抑菌率仍旧达到99%以上,具有优异的抗菌性及良好的耐洗涤性能。另外,植物还原法制备的纳米银溶液整理后的棉织物紫外线防护系数(UPF)值达到了36.82,具有较好的抗紫外性能。  相似文献   

4.
采用化学镀方法在碳纤维布表面沉积了金属银层.测量了利用优化工艺制得的镀银碳纤维布的表面电阻,并采用冷热循环法对镀层结合强度进行了测试,应用雷达散射截面(RCS)测试系统对同样尺寸的镀银碳纤维布及未改性碳纤维布的毫米波波段RCS值进行了测试.结果表明:得到的镀银碳纤维布镀覆均匀、金属光泽强,有较强的导电性能.镀银碳纤维布在毫米波波段的RCS值较未改性碳纤维布有很大增幅,且与理论值相近.  相似文献   

5.
This article reports a facile one‐step methodology to increase fire resistance properties of cotton fabric. The flame‐retardant coating for cotton fabric was synthesized with methyltriethoxysilane and organophosphates (M102B) through an ultrasound irradiation process. The coating structure and surface morphology of uncoated and coated fabrics were investigated by Fourier transform infrared spectroscopy and scanning electron microscope, respectively. The flame‐retardant properties, bending modulus, air permeability and thermal stability were studied by vertical burning test, cantilever method, air permeability test and thermogravimetric analysis (TGA). As a result, the cotton fabric coated with 29.2% (mass increased) of flame‐retardant coating was able to balance the flame retardant property and wearing comfort of the fabrics. The TGA results showed that the residue char of cotton was greatly enhanced after treatment with the coating, which has a high char forming effect on cellulose during testing. Furthermore, flame‐retardant property of coated fabrics did not change significantly after 10 washing cycles. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45114.  相似文献   

6.
Sulfonated melamine‐formaldehyde (SMF) resin was successfully synthesized with a mixture of formaldehyde, melamine, and NaHSO3 in an aqueous solution. Then the SMF was used as the blowing agent to combine with chitosan and phytic acid for fabricating the intumescent flame retardant coating on the surface of the cotton fabric by layer‐by‐layer (LbL) self‐assembled technology. As characterized by X‐ray photoelectron spectroscopy, scanning electron microscopy, and attenuated total reflection Fourier transform infrared spectroscopy, the (chitosan/SMF + phytic acid)n coating was successfully deposited on the surfaces of cotton fibers. Thermogravimetric analysis results exhibited that the thermal stabilities of coated cotton fabrics under nitrogen and air atmosphere were enhanced at temperatures ranging from 400 to 700 °C compared with pure cotton fabric. At 700 °C, the char residues of cotton‐5BL and cotton‐10BL under a nitrogen atmosphere were improved 25.9 and 32 wt % than that of pure cotton fabric, respectively. In the vertical flame test, the self‐extinguishing could be obtained for the cotton‐10BL sample. This work first utilized SMF as negative polyelectrolyte to fabricate intumescent flame retardant coating by LbL self‐assembled technology on cotton fabric to strengthen its thermal stability and flame resistance. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46583.  相似文献   

7.
利用乳液缩聚法制备芯材为氟硅烷( FAS13)壁材接枝紫外吸收剂的二氧化硅微胶囊,将其与有机硅树脂乳液共混,涂覆于棉织物表面形成超疏水防紫外织物涂层。通过扫描电镜和透射电镜观察微胶囊的形态和粒径,并对涂层的水接触角和防紫外性能进行了测试,同时测试了涂层的耐老化、耐磨损、耐高温以及耐酸碱性。结果表明:织物涂层中微胶囊最佳含量为 45%(其中内含 6%紫外吸收剂),由此制备的涂层表面水接触角可达到 150°以上,并且具有较好的耐老化、耐高温、耐酸碱腐蚀、耐磨损等性能;同时该织物涂层具有优异的防紫外性,紫外线防护系数(UPF)可以达到 111.2。  相似文献   

8.
Nanostructured silver films of different thicknesses were deposited on surfaces of polypropylene nonwovens by magnetron sputter coating to obtain antibacterial and electrical conductive properties. The surface morphology of nanostructured silver films was investigated by atomic force microscopy (AFM). The antibacterial properties of the nonwovens coated with relatively thinner films were evaluated using the shake flask test. The conductivity of the nonwovens coated with relatively thicker films was examined using an ohm-meter. The results of the antibacterial test revealed that the antibacterial performance improved gradually as the film thickness increased from 0.5 to 3 nm. It is believed that the total amount of silver ions released from the coating was increased along with the increase in film thickness. As sputtering time prolonged, the grain sizes of the silver particles were increased and the coating became more compact. The results of the electrical conductivity test showed that the increased film thickness led to the improved electrical conductivity when the film was relatively thicker. The AFM images clearly revealed the change in surface morphology formed by sputter coating. The growth and coverage of the coating layer contributed to the improvement in its antibacterial and conductive properties.  相似文献   

9.
高分子电磁屏蔽织物的研制   总被引:1,自引:0,他引:1  
采用自制导电涤纶织物和棉织物,通过在交联剂中均匀分散导电粉末制得屏蔽涂料,采用涂敷方法得到电磁波屏蔽织物。讨论了导电粒子种类与质量分数对涂层表面比电阻、涂层的屏蔽性能等的影响。结果表明:采用三明治型涂敷方式,每层涂层中导电粉末的质量分数分别为银粉70%、石墨60%,涂层的总厚度40~60μm,所得屏蔽织物的屏蔽效能最优,在30~1500MHz内平均达30dB,织物的手感保持良好,有工业化前景。  相似文献   

10.
Summary TPU was reinforced by two types of NPCC particulates (NPCC201 and 401) through melt compounding. Thermal analysis suggested that all the stearic acid coating on NPCC201 was attached to the particulate surface by forming calcium stearate, whereas the fatty acid coating of NPCC401 was excessive and part of the coating existed as free fatty acids. The tensile modulus of TPU/NPCC composites increased slightly with the addition of NPCC, while the toughness showed a larger increase. TPU/NPCC401 showed a unique rheological behavior which has not been reported before. In dynamic shear, G’ increased with particulate loading at low frequencies but decreased at high frequencies. In steady shear, viscosity decreased with NPCC loading and an additional Newtonian plateau was observed at low shear rates. The free fatty acid coating on NPCC401 surface was believed to dissipate into the TPU matrix and generate this unique behavior. These results show the importance of achieving optimal coating. Full coverage of the particulate surface is required to achieve optimal coating effects, but over-coating should be prevented to avoid the deterioration of properties.  相似文献   

11.
Cotton fabric was successfully modified using a simple mist polymerization with polyurethane (PU) prepolymer and ethylene glycol as the monomers. Scanning electron microscope showed the presence of a very thin polymer coating on the cotton fiber surface. Martindale abrasion tests revealed that the thin PU coating imparted to the cotton fabric a doubled wearing durability compared with the original fabric. Additional experiments demonstrated that the mist polymerization has little impact on the desired cotton properties such as water absorptivity, vapor transmissibility, mechanical property, and flexibility. Considering the excellent balance between the enhanced abrasion resistance and the cotton natures, this surface modification methodology has potential to fabricate wearing durable textiles. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43024.  相似文献   

12.
Protection against bacterial contamination remains a demand for healthcare textiles such as wound dressings to reduce or eliminate hospital-acquired infections related to antibiotic-resistant bacteria. We report herein a simple and straightforward in situ approach to deposit copper oxide and titanium oxide nanoparticles onto cotton fabric using a sonochemical-mediated sol–gel method. Modification of the cotton surface was achieved by incorporation of citric acid (CA) and polyethylene glycol (PEG) to improve the attachment of the nanoparticles and reduce the attachment of bacteria to the cotton surface, respectively. The resultant cotton fabric was used against Escherichia coli as a Gram-negative bacterium and Staphylococcus aureus as a Gram-positive bacterium in dark condition as an in vitro model for treatment of bacterial wound infection. The effects of different treatment parameters including duration and frequency of ultrasonic irradiation, surface modification with PEG and/or CA, and cotton chemical composition with different metal oxide molar ratios on the antibacterial activity of the treated cotton fabric were studied. All treated cotton fabrics showed antibacterial activity, with higher efficiency for those coated with CuO or CuO/TiO2 (1:1 molar ratio) among the single metal oxide and composite-modified cotton fibers, respectively. Our results show that such functionalized cotton fibers could actively fight the spread of bacterial infections by preventing bacterial adhesion, enabling more efficient bonding, and ultrasonically promoting generation of nanoparticles and their strong adhesion to the fabric surface.  相似文献   

13.
《Ceramics International》2023,49(8):12274-12284
Photocatalytic antibacterial coats are considered among the best solutions to bacterial contamination of fabrics, with the drawback of reduced efficacy after continued use and washing. In the present study, the g-C3N4/ZnO (CNZ) nanocomposite has been introduced as a novel cotton fabric coating, with high durability, and CNZ nanopowders were synthesized using a two-step thermal synthesis process and directly coated onto cotton fabric using the sonication technique. The synthesized nanoparticles (NPs) were examined using X-ray diffraction (XRD), UV–visible spectroscopy, photoluminescence (PL), Brunauer-Emmett-Teller (BET), and Fourier transform infrared (FTIR) analyzes. Besides, the SEM analysis confirmed the successful deposition of NPs on cotton fabric. The photodegradation of methylene blue (MB) stain was assessed as a functional test for the photocatalytic effectiveness of the coated fabric, then its antibacterial properties were evaluated under visible light, by direct contact with bacterial suspensions and culturing. The results revealed that the CNZ-coated cotton fabric containing 30% ZnO (CNZ-30) has significant photocatalytic antibacterial activity against both Escherichia coli (gram-negative), and Staphylococcus aureus (gram-positive) bacteria. The bacterial reduction rate of CNZ-30 coated fabric for both E. coli and S. aureus was above 98%, even after 18 washing cycles. This excellent performance is attributed to the effective coupling of ZnO with g-C3N4, improved light absorption, and reduced e/h+ pair recombination rates. This study novel coating method can offer an environmentally friendly, cost-effective, and simple process to manufacture hybrid CNZ antibacterial cotton in the textile industry.  相似文献   

14.
秦圆 《精细化工》2021,38(7):1386-1392,1458
以植物金银花提取物作为还原剂制备了纳米ZnO和纳米Ag,通过浸轧法将纳米ZnO单独整理以及将两者依次整理到棉织物上制备多功能棉织物(ZnO-棉织物、ZnO/Ag-棉织物).利用SEM、XRD、FTIR分析了整理前后棉织物的形貌和结构,并探讨了整理后棉织物的多功能性.结果表明,棉织物上的纳米粒子分布较均匀且发生了轻微团聚.与ZnO-棉织物相比,ZnO/Ag-棉织物对亚甲基蓝(MB)和红酒的降解率分别提高了7.09%和10.61%,说明纳米Ag提升了纳米ZnO的光催化活性.ZnO-棉织物经过10次洗涤后其纳米粒子含量虽有小幅下降,但对MB的降解率仍达到83.24%以上,说明负载纳米粒子后棉织物具有良好的自清洁能力和耐洗性能.此外,ZnO-棉织物和ZnO/Ag-棉织物的紫外防护系数(UPF)值分别达到33.23和41.06,对大肠杆菌和金黄色葡萄球菌的抑菌率均达到95%以上,表现出优良的抗紫外线性和抗菌性能.  相似文献   

15.
In this study, titanium dioxide (TiO2) was used as coating compound to add self-cleaning and antibacterial functionality properties to the cotton fabric. TiO2-consisting coating compounds were prepared at four different processing temperatures (20, 40, 60, and 80°C) in order to examine the influence of process temperature on average particle size. Among the prepared solutions, the one prepared at 80°C process temperature was selected for the dip coating application of the 100% cotton fabric, which formed a transparent nanosized TiO2 film on the fibrous structure of fabric. Dip coating trials were done at five coating temperatures of 20, 40, 60, 80, and 100°C. TiO2-coated and uncoated fabric samples were then tested to evaluate their self-cleaning and antibacterial activities. A self-cleaning activity test was conducted using uncoated and TiO2-coated fabric samples which were stained with hot tea solution via dipping method. Stained fabric samples were illuminated under a solar simulator for the color changes to measure photocatalytic degradation of stain colors. Antibacterial performance of TiO2-coated and uncoated fabric samples was determined against pure cultures of Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 29213.  相似文献   

16.
In the public transport system, hand-touch surfaces such as seats in buses, trains, trams, and airplanes represent a reservoir of bacteria and a potential risk for contamination among passengers. The antimicrobial activity of silver has been known since ancient times. In this work, natural leather commonly used in the public transport system was treated with silver through the in situ photoreduction of a silver solution. The morphology of the coating and the distribution of silver clusters were studied by scanning electron microscopy and by energy dispersive X-ray spectroscopy. The amount of silver on the surface was quantified by thermo-gravimetric analysis. The antibacterial capability of the treated materials was checked against Gram-positive and Gram-negative bacteria. Taber test was conducted on silver treated samples in order to study the durability of the treatment. The morphology of the silver coating and its antibacterial capability were analyzed also after the Taber test.  相似文献   

17.
To control pathogenic microbial contamination on polymeric material surface, it is pivotal to develop materials with efficacious antimicrobial activity. Two pyridinium N‐chloramine precursors containing a siloxane handle were synthesized, characterized, and grafted onto cotton fabrics. The attenuated total reflectance spectra and scanning electron microscope photo analysis indicated that the cotton fabric surface was successfully modified. The resultant chlorinated fabric samples were challenged against bacteria Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923. Results showed that: (1) the surface modified cotton fabrics displayed satisfactory biocidal efficacy; (2) the precursor structure played a major role on surface grafting and antibacterial activity. This work provides two promising pyridinium N‐chloramine precursors which hold potential application for preparing antibacterial textile materials. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45323.  相似文献   

18.
In this study, the effects of polycarboxylic acid sodium salt on the dyeing of cotton with reactive dyes were evaluated by measuring and comparing the K/S values and dyeing fastnesses of the dyed cotton fabric samples. Results showed that the K/S value and dyeing fastness of cotton fabrics dyed with polycarboxylic acid sodium salt, substituting inorganic salts as exhausting agent were close to that of with sodium chloride when dip‐dyeing process was used. While, in pad‐dry dyeing, the K/S value of cotton fabric samples dyed with polyacid salts as exhausting agent was higher than that of with sodium sulfate, and the dyeing fastnesses of these samples were nearly the same. The dyeing mechanism of cotton fabric with reactive dye, using polycarboxylic acid sodium salt as exhausting agent was analyzed. The dyeing exhausting mechanism of reactive dye seems different when the inorganic salt and polycarboxylic acid sodium salt were used as exhausting agent in the dyeing of cotton fabric with reactive dye. The polycarboxylic acid sodium salt, as weak electrolyte, increased the dye‐uptake of reactive dye on cotton fabric not only by screening negative charges on cotton surface, but also by the effect of salting‐out or hydrophobic combination. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

19.
Our previous work demonstrated the antibacterial activity of plasma sprayed zinc-modified calcium silicate coating. To enhance the bactericidal effect, in this paper, silver and zinc co-incorporated calcium silicate coating (ZC0.3-Ag) was fabricated onto Ti–6Al–4V substrate via plasma spraying technology. The coating was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) measurements. Transmission electron microscopy (TEM) showed that the silver nanoparticles 10–100 nm in diameter were randomly distributed in the amorphous matrix after the silver modification. In chemical durability test, the ZC0.3-Ag coating presented improved chemical stability when compared with that of the original and Ag-doped coating. In vitro antibacterial study indicated that the inactivation of bacteria (Staphylococcus aureus and Escherichia coli) on the ZC0.3-Ag coating was significantly enhanced compared to that on the Zn-modified coatings. The enhanced bactericidal activity was attributed to the addition of silver. Cytocompatibility evaluation demonstrated that the ZC0.3-Ag coating surface supported the adhesion and spreading of human mesenchymal stem cells (hMSCs), and no significant cytotoxicity was observed for the coating.  相似文献   

20.
在电接触件用T2紫铜表面制备了功能性镀银层。参照相关标准并使用扫描电镜、表面粗糙度测量仪、回路电阻测试仪和盐雾试验机,对镀银层进行了表征。结果表明:镀银层具有银白色金属光泽,与基体的结合力较好;镀银层表面非常平整,表面粗糙度约为0.16μm;镀银使T2紫铜试样的表面粗糙度和接触电阻分别降低了12%和11%;镀银后的T2紫铜试样表现出较好的耐盐雾腐蚀性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号