首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
In order to further decrease the cost and enhance the durability of sulfonated poly(ether ether ketone) membrane for vanadium redox flow battery, a super thin (40 μm) polytetrafluoroethylene (PTFE)/SPEEK (PS) membrane is prepared. The physico‐chemical properties and single cell performance of PS membranes prepared with different casting solvents including NMP (N‐methyl‐2‐pyrrolidone), DMF (N,N′‐dimethylformamide), and DMAc (N,N′‐dimethylacetamide) have been investigated. Results show that the energy efficiency of VRB with PS/DMF can reach up to 91.2% at the current density of 40 mA cm?2, which is 11.1% and 6.4% higher than that of the commercial Nafion 212 and pristine SPEEK membrane, respectively. In addition, charge–discharge test over 150 times proves that the PS/DMF membrane possesses high stability and thus it is suitable for VRB application. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43593.  相似文献   

2.
质子交换膜(PEM)作为全钒液流电池(VRFB)的核心组件之一,应当解决成本高昂、合成过程复杂等问题,并具备高质子传导率、低钒离子渗透率、高机械强度和优异化学稳定性等关键性能。本文基于四甲基双酚芴单体通过缩聚反应合成了一系列聚芴醚酮化合物PFEKs,再利用溴代反应将苯甲基功能化为溴甲基,接着通过4-羟基苯磺酸钠的SN2亲核取代制得了一系列不同离子交换容量的磺化聚芴醚酮聚合物(SPFEKs)。通过溶液浇铸法成膜并酸化,得到一系列新型低成本PEMs。该合成路线的原料来源广泛,价格低廉,不涉及危险的磺化反应,易于工业放大。所得膜都具有良好的机械性能和氧化稳定性,其中SPFEK-40膜具有较高的质子传导率及离子选择性、较低的钒离子渗透率及面电阻,综合性能优异。以SPFEK-40膜组装的VRFB在电流密度为80 mA/cm2时的能量效率(EE)为88.2%,高于以Nafion 212膜组装的VRFB的84.8%。此外,以SPFEK-40膜组装的VRFB在30次循环后放电容量仅衰减至84.3%,远高于以Nafion 212膜组装的VRFB的66.1%。  相似文献   

3.
聚醚醚酮(PEEK)是一种性能优异的工程塑料。笔者简单地介绍了聚醚醚酮的特性,对近年来磺化聚醚醚酮的制备、SPEEK的性能及应用做了比较全面的归纳,并对磺化聚醚醚酮未来的发展前景进行了展望。  相似文献   

4.
采用流延法制备了聚醚砜(PES)含量不同的PES/磺化聚醚醚酮(SPEEK)共混膜。PES与SPEEK具有良好的相容性。所制备PES/SPEEK共混膜的含水率、溶胀度和甲醇透过系数均随PES含量的增加而降低。虽然共混膜的质子传导性能有所降低.但阻醇性能和溶胀性能提高,这说明PES/SPEEK共混膜是一种很好的直接甲醇燃料电池用固体高分子电解质膜材料。  相似文献   

5.
李微微  王树博  谢晓峰 《化工学报》2013,64(Z1):155-158
通过NaBH4还原磺化聚醚醚酮(SPEEK)得到羟基功能化的SPEEK后,采用酯化反应将离子液体1-羧甲基-3-甲基咪唑氯盐接枝到磺化聚醚醚酮上得到接枝聚合物。实验结果表明:离子液体修饰后的磺化聚醚醚酮离子交换膜吸水率和溶胀度降低,而导电率得到了显著提高。  相似文献   

6.
Song Xue 《Polymer》2006,47(14):5044-5049
Blend membranes were obtained by solution casting from poly(vinylidene fluoride) (PVDF) and sulfonated poly(ether ether ketone) (SPEEK) in N,N-dimethylacetamide (DMAc). DSC and XRD were used to characterize the structure of the blend membranes. The effect of PVDF content on the membrane properties was investigated. The methanol permeability, water uptake and the swelling ratio of blend membranes decreased with the increase of PVDF content. Though the proton conductivity decreased upon the addition of PVDF, they were still comparable to that of Nafion® 117 membrane. Higher selectivities were also found for most blend membranes in comparison with Nafion® 117 membrane. The effect of methanol concentration on solution uptake, swelling ratio and methanol permeability of the blend membranes was also studied.  相似文献   

7.
以二氧化硅和磷钨酸改性磺化聚醚醚酮制得一种新型磺化聚醚醚酮复合膜。复合膜中杂多酸仍然保持着Keggin型PW12O430-阴离子的特征结构,二氧化硅和磷钨酸以无定形状态均匀分散于复合膜中。磷钨酸/二氧化硅/磺化聚醚醚酮复合膜的阻醇性能优于Nafion115;质子导电性能随着温度的提高有所增加。复合膜在磷钨酸中具有良好的稳定性。  相似文献   

8.
Supercapacitors have attracted much interest because of their high power density and long cycling life. However, the porous polypropylene membranes that are widely used as separators in supercapacitors are unfavorable for transporting ions and constructing the interfaces between electrolyte and electrodes due to their hydrophobic property. As a consequence, a crosslinked solid polymer electrolyte membrane and a semi‐interpenetrating polymer network (sIPN) were fabricated from sulfonated poly(ether ether ketone) (SPEEK) and poly(vinyl alcohol) (PVA), which can be used as hydrophilic separators. Their structures were examined using Fourier transform infrared spectroscopy. The electrochemical properties of assembled electrical double‐layer capacitors (EDLCs) were investigated using cyclic voltammetry, galvanostatic charging–discharging and impedance analysis. At a current density of 1 A g?1, a single electrode in the EDLC with the sIPN shows a specific capacitance of 134 F g?1. As a comparison, a single electrode in the EDLC with a SPEEK membrane demonstrates a specific capacitance of only 121 F g?1. After 1000 charge–discharge cycles, the specific capacitance retentions of both EDLCs are nearly 100%. These results suggest that the sIPN based on SPEEK and PVA has great potential to serve as a separator in EDLCs. © 2018 Society of Chemical Industry  相似文献   

9.
用高磺化度的磺化杂萘联苯聚醚酮(SPPEK)制备DMFC质子交换膜时,膜的机械强度会因过度溶胀而下降。通过在SPPEK(DS=61%)中掺杂1,2,4-三羧基丁烷-2-膦酸锆(Zr(PBTC)),我们制备出 Zr(PBTC)/SPPEK复合质子交换膜。实验表明, Zr(PBTC)的掺杂能有效降低膜的吸水量(溶胀),并能减小膜的甲醇透过系数。80℃时,30wt.%Zr(PBTC) /SPPEK复合膜的吸水量与SPPEK膜比降低了30%。室温下复合膜的甲醇透过系数在10-7 cm2.s-1数量级上,比Nafion 115膜低一个数量级以上。液体甲醇溶液进料的DMFC单电池测试表明,30wt.%Zr(PBTC) /SPPEK复合膜的电池性能优于SPPEK的电池性能。  相似文献   

10.
DMFCs用SPEEK/SiOx-S复合质子交换膜   总被引:1,自引:0,他引:1       下载免费PDF全文
A sulfonated poly(ether ether ketone) (SPEEK) membrane with a fairly high degree of sulfonation (DS) can swell excessively and even dissolve at high temperature. To solve these problems, insolvable functionalized silica powder with sulfonic acid groups (SiOx-S) was added into the SPEEK matrix (DS 55.1%) to prepare SPEEK/ SiOx-S composite membranes. The decrease in both the swelling degree and the methanol permeability of the membranes was a dose-dependent result of addition of the SiOx-S powder. Pure SPEEK membrane swelled 52.6% at 80°C, whereas the SPEEK/SiOx-S (15%, by mass) membrane swelled only 27.3% at the same temperature. From room temperature to 80℃, all SPEEK/SPEEK/SiOx-S composite membranes had methanol permeability of about one order of magnitude lower than that of Nafion115. Compared with pure SPEEK membranes, the addition of the SiOx-S powder not only leads to higher proton conductivity, but also increases the dimensional stability at higher temperatures, and greater proton conductivity can be achieved at higher temperature. The SPEEK/SiOx-S (20%, by mass) membrane could withstand temperature up to 145°C, at which in 100% relative humidity (RH) its proton conductivity exceeded slightly that of Nafion115 membrane and reached 0.17 S•cm-1, while pure SPEEK mem-brane dissolved at 90°C. The SPEEK/SiOx-S composite membranes are promising for use in direct methanol fuel cells because of their good dimensional stability, high proton conductivity, and low methanol permeability.  相似文献   

11.
Binary blends of the sulfonated poly(ether ether ketone) (SPEEK)–poly(ether imide) (PEI) and SPEEK–polycarbonate (PC), and ternary blends of the SPEEK–PEI–PC, were investigated by differential scanning calorimetry. SPEEK was obtained by sulfonation of poly(ether ether ketone) using 95% sulfuric acid. From the thermal analysis of the SPEEK–PEI blends, single glass transition temperature (Tg) was observed at all the blend composition. For the SPEEK–PC blends, double Tgs were observed. From the results of thermal analysis, it is suggested that the SPEEK–PEI blends are miscible and the SPEEK–PC blends are immiscible. Polymer–polymer interaction parameter (χ12) of the SPEEK–PEI blends was calculated from the modified Lu and Weiss equation, and found to range from −0.011 to −0.825 with the blend composition. For the SPEEK–PC blends, the χ12 values were calculated from the modified Flory–Huggins equation, and found to range from 0.191 to 0.272 with the blend composition. For the SPEEK–PEI–PC ternary blends, phase separation regions that showed two Tgs were found to be consistent with the spinodal curves calculated from the χ12 values of the three binary blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2488–2494, 2000  相似文献   

12.
Dongyang Chen  Min Xiao 《Polymer》2011,52(23):5312-5319
High-molecular-weight bulky-block poly(fluorenyl ether thioether ketone)s were successfully synthesized by a two steps one-pot protocol using N,N′-dimethy-S-carbamate masked dithiols for vanadium redox flow battery (VRB) application. The followed sulfonation procedure gave birth to novel sulfonated block poly(fluorenyl ether thioether ketone)s (SPFETKs) with controlled ionic exchange capacities (IEC). Membranes with proton conductivities higher than (IEC > 1.66 mequiv. g−1) or comparable to (IEC < 1.66 mequiv. g−1) that of Nafion117 membrane were achieved. The VO2+ permeabilities of SPFETKs membranes were much lower than that of Nafion117 membrane. The thermal properties, mechanical properties, oxidative stability, water uptake, proton conductivity, VO2+ permeability and cell performance were investigated in detail.  相似文献   

13.
BACKGROUND: Sulfonated poly(ether ether ketone) (SPEEK) was successfully synthesized from sulfonated 4,4′‐difluorobenzophenone, 4,4′‐difluorobenzophenone and bisphenol A. SPEEK cation exchange membranes were prepared by the casting method. The composition and morphology of SPEEK were characterized using Fourier transform infrared and 1H NMR spectroscopies, respectively. The ion exchange capacity (IEC), water uptake and degree of swelling of the membranes were also investigated. SPEEK120 was used as a separator in an electrolysis cell to produce thioglycolic acid (TGA). RESULTS: SPEEK polymerization was carried out at 145 and 175 °C for 10 h. The IEC of the SPEEK membranes was measured as 0.24–2.02 meq g?1 and the water uptake as 2.26–26.45%. The degree of swelling of the membranes was 1.71–15.28%. TGA was effectively prepared by electro‐reduction of dithioglycolic acid. The current efficiency peaked at 58.31% at room temperature with a current density of 15 mA cm?2. CONCLUSION: SPEEK120 membrane shows good dimensional stability and H+ permeability. Compared to the traditional metal‐reduction method, the current electro‐reduction technique avoids the use of zinc powder and so reduces environmental pollution. Copyright © 2009 Society of Chemical Industry  相似文献   

14.
Sulfonated poly(ether ether ketone) (SPEEK) membranes were modified with chemically in situ polymerized polypyrrole (PPy). The effects of temperature and methanol concentration on the solution uptake and the swelling ratio of SPEEK/PPy membranes were investigated. The solution uptake and the swelling ratio of the membranes decreased upon the incorporation of PPy. When the methanol concentration increased, both the solution uptake and the swelling ratio increased to a maximum, and then decreased. FT-IR, XRD, DSC and TGA were used to characterize the modified membranes. The methanol permeability of modified SPEEK membranes decreased upon the incorporation of PPy, and higher selectivity values were found for SPEEK/PPy membranes in comparison with pure SPEEK and Nafion® 117 membranes.  相似文献   

15.
Poly(vinylidene fluoride)/sulfonated poly(phthalazinone ether sulfone ketone) (PVdF/SPPESK) blend membranes are successfully prepared by solution blending method for novel proton exchange membrane (PEM). PVdF crystallinity, FTIR‐ATR spectroscopy, thermal stability, morphology, water uptake, dimension stability, and proton conductivity are investigated on PVdF/SPPESK blends with different PVdF contents. XRD and DSC analysis reveal that the PVdF crystallinity in the blends depends on PVdF content. The FTIR‐ATR spectra indicate that SPPESK remains proton‐conducting function in the blends due to the intactness of ? SO3H group. Thermal analysis results show a very high thermal stability (Td1 = 246–261°C) of the blends. PVdF crystallinity and morphology study demonstrate that with lower PVdF content, PVdF are very compatible with SPPESK. Also, with lower PVdF content, PVdF/SPPESK blends possess high water uptake, e.g., P/S 10/90 and P/S 15/85 have water uptake of 135 and 99% at 95°C, respectively. The blend membranes also have good dimension stability because the swelling ratios are at a fairly low level (e.g., 8–22%, 80°C). PVdF/SPPESK blends with low PVdF content exhibit very high proton conductivity, e.g., at 80°C, P/S 15/85 and P/S 10/90 reach 2.6 × 10?2 and 3.6 × 10?2 S cm?1, respectively, which are close to or even higher than that (3.4 × 10?2 S cm?1) of Nafion115 under the same test condition. All above properties indicate that the PVdF/SPPESK blend membranes (particularly, with 10–20% of PVdF content) are very promising for use in PEM field. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
The sulfonated poly(ether ether ketone ketone)/phosphotungstic acid (SPEEKK/PWA) composite membranes were researched for proton exchange membranes. The effect of casting condition on the properties of membranes was studied in detail. The study showed that the casting condition has great influence on the membrane properties because of the hydrogen bond between the SPEEK and PWA and the interaction between the SPEEKK and dimethylformamide (DMF). The PWA particles are well crystallized on the surface when the velocity of the solvent volatilization is very slow under the SEM. The study will favor further research on excellent composite membranes for proton exchange membrane fuel cells. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 4020–4026, 2007  相似文献   

17.
Sulfonated copper phthalocyanine (CuPCSA) was embedded into Nafion membranes in ratios of 0, 1.25, 2.5, 5, and 7.5 wt %. The absence of CuPCSA related peaks in WAXS patterns indicated that CuPCSA did not form crystalline phases during membrane formation. Tensile strength and Young's modulus were highest in the range of 2.5–5 wt % CuPCSA. As demonstrated for Nafion 212, the weight gain and swelling in water-based solutions decreases when the sulfuric acid concentration increases from 0 to 2 M. In 2 M sulfuric acid, addition of CuPCSA increases the weight gain. In contact with VO2+, blue CuPCSA is oxidatively hydrolyzed to form colorless sulfonated phthalimide. XPS analysis showed that (1) this reaction is quantitative and (2) that the sulfonated phthalimide does not leach out from the membrane during operation in the flow battery. The coulomb efficiency increases with the amount of phthalimide. This affects the energy efficiency so strongly, that it follows the same trend as the coulomb efficiency. During cycling, the cell with Nafion/7.5 wt % filler showed the highest discharge capacity and the lowest difference between charge and discharge capacity. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47547.  相似文献   

18.
Development of alternate materials to Nafion, based on ionically conducting polymers and their blends is important for the wider applications of proton exchange membrane fuel cells. In this work, blends of sulfonated poly(ether ether ketone) (SPEEK) with poly(ether sulfone) (PES) are investigated. SPEEK with various ion exchange capacity (IEC) was prepared and blended with PES, which is nonionic and hydrophobic in nature. A comparative study of the water uptake, proton conductivity, and thermo‐mechanical characteristics of SPEEK and the blend membranes as a function of the IEC is presented. Addition of PES decreases the water uptake and conductivity of SPEEK. Chemical and thermal stability and mechanical properties of the membrane improve with the addition of PES. The effect of water content on the thermo‐mechanical properties of membranes was also studied. The morphology of blend membranes was studied using SEM to understand the microstructure and miscibility of the components. On the basis of the results, a plausible microstructure of the blends is presented, and is shown to be useful in understanding the variation of different properties with blending. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
Anisotropic proton exchange membranes composed of five layers with different contents of ionic groups across the membrane were prepared by simultaneous electrospinning of sulfonated and nonsulfonated poly(ether ketone) (PEK)s. To prepare nonporous and defect- free membranes from electrospun mats, nonsulfonated fibers as hydrophobic part of the membrane were melted by hot-pressing so that covered sulfonated fibers (hydrophilic part). Prepared membranes showed better thermal and dimensional stability compared to Nafion 115. Proton conductivity of membranes was comparable with Nafion especially at higher temperatures. Water uptake of prepared membranes and mechanical strength of them were in an acceptable range. The results showed that the difference between sulfonated PEK fibers in surface and center of the membranes affect proton conductivity and mechanical properties of the membranes.  相似文献   

20.
The physical form of polymers is often important for carrying out subsequent processing operations. For example, fine powders are desirable for molding and sintering compounds because they consolidate to produce void free components. The objective of this work is to prepare fine polymeric particulates suitable for processing into fiber reinforced polymer matrix composites. Micron size particles of poly(ether ether ketone) (PEEK) were prepared by rapidly quenching solutions of these materials. PEEK pellets were dissolved at temperatures near the PEEK melting point in a mixture of terphenyls and quaterphenyls; then the solution was quenched to a temperature between the Tg and Tm (≈ 225°C) by adding a room temperature eutectic mixture of diphenyl ether and biphenyl. A supersaturated, metastable solution of PEEK resulted, causing rapid nucleation. Fine PEEK particles rapidly crystallized from this solution. The average particle size was measured using transmission electron microscopy, atomic force microscopy, and by light scattering of aqueous suspensions which had been fractionated by centrifugation. The average particle diameter was about 0.6 μm. Three dimensional photomicrographs obtained via atomic force microscopy showed some aggregates in the suspensions. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 63: 1571–1578, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号