首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new amphiphilic copolymer (copoly‐(MR‐BMA‐HEA‐MAA), PRBHM) containing multihydroxyl segments was designed and synthesized for application in drug carrier. PRBHM can be dissolved in water to form aggregates directly with a critical aggregate concentration (CAC) of 0.0138 mg mL?1. The chains of PRBHM can be collapsed into hydrophobic globules when pH decreases from neutral to slightly acid condition (pH = 5.0–7.0) in water. Since the hydrophilic hydroxyl group is independent on pH, PRBHM can keep stable both in neutral and slightly acid aqueous solutions. The hydrophobic small molecules such as 5‐(4‐(4‐vinylbenzyloxy) phenyl)‐4,5‐dihydro‐1,3‐diphenyl‐1H‐pyrazole (PY) can be loaded into PRBHM aggregates via ultrasonic treatment in water, and can be internalized into BEL‐7402 cancer cells. The cytotoxicity determination also indicates the good biocompatibility of PRBHM in potential application as a drug carrier. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
A well‐defined amphiphilic block copolymer was synthesized by the coupling of carboxyl‐terminated methoxy poly(ethylene glycol) (MPEG) with a hydroxyl‐terminated octamer of glycolic acid, which was obtained by a stepwise synthetic procedure with the end‐group protection and deprotection. The block copolymer had a polydispersity index (PDI) of 1.01, as determined by gel permeation chromatography. It was further coupled to paclitaxel to form a prodrug of paclitaxel. The paclitaxel content in the prodrug was about 10%, and its PDI was 1.02. The antitumor activity of the conjugate against human lung carcinoma A549 cells was evaluated by mitochondrial dehydrogenase (MTT) assay. The results show that paclitaxel could be released from the conjugate without losing cytotoxicity. Therefore, the well‐defined amphiphilic block copolymer from MPEG and oligomer of glycolic acid could potentially provide novel opportunities to obtain reproducible pharmacokinetic behavior in the design of a drug‐delivery system. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

3.
This study was to investigate the kinetics of drug release from polymer/TiO2 nanotubes composite. Lidocaine and carprofen were selected as model drugs to represent weak base and weak acid drugs, respectively. Mathematical models used to fit the in vitro drug release experimental data indicate that at higher pH, the drug release was first order diffusion controlled. At lower pH, the release of the two drugs exhibits two staged controlled release mechanism. The first phase is due to drug diffusion and the second stage is a result of poly(lactic‐co‐glycolic acid) (PLGA) polymer degradation. The rate of drug release from polymer/TiO2 nanotubes drug carrier was mainly controlled by three pH dependent factors: the solubility of the drug, the degree of polymer swelling/degradation, and the electrostatic force between polymer and drug. This study suggests that controlled release could be achieved for polymer/TiO2 nanotubes drug carrier via the modulation of pKa values of polymers and drug solubility. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41570.  相似文献   

4.
Microgels (MGs) are synthetic colloidal hydrogel particles made of three dimensional polymer networks. Their chemical composition is crucial for their use as intelligent drug release systems operated by temperature control. Herein, several MGs using N-isopropylacrylamide (Nipam)/N-isopropylmethacrylamide (Nipmam), chitosan and acrylic/methacrylic acid have been synthesized by free radical polymerization reactions (NC MGs) and the effects of surfactants and different reaction times on size and swelling properties have been investigated. MGs have been identified and characterized by dynamic light scattering and atomic force microscopy, and finally used to optimize the encapsulation protocol of the hydrophobic drug sorafenib. The drug delivery system here described has encapsulation efficiency of 40% and releases 10% of the entrapped drug over about 16 h after the temperature is raised above the volume phase transition temperature. Data suggest that MGs with optimized composition may act as properly instructed entities able to trap and release biomolecules following external stimuli.  相似文献   

5.
The application of fibers associated with drugs is a promising alternative to meet the clinical needs of tissue repair. Curcumin exhibits great cicatricial potential because it has numerous pharmacological properties. This research aimed to produce fibers of polycaprolactone and copolymer F-108 associated with curcumin and to evaluate in vivo their action on the process of wound healing. The fibers were produced by electrospinning technique and characterized by scanning electron microscopy (SEM), X-ray diffractometry (XRD), and fluorescence microscopy. They were applied in cutaneous wounds of rats for the analysis of photoacoustic permeation and histological study. The characterization showed that the electrospinning allowed the preparation of homogeneous material with curcumin. The fibers benefited healing of the wounds and allowed the permeation of curcumin at all stages. The use of PCL/F-108 fibers allowed the elaboration of a new curcumin delivery system, improving its bioavailability and action in the healing of excisional wound. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48415.  相似文献   

6.
A serial of star‐shaped poly(ε‐caprolactone)‐b‐poly(ethylene oxide) (SPPCL‐b‐PEO) block copolymers with porphyrin core were successfully synthesized from ring‐opening polymerization (ROP) of ε‐caprolactone (CL) initiated with porphyrin core, followed by coupling reaction with a hydrophilic polymer poly(ethylene oxide) (PEO) shell. The structure of this novel copolymer were synthesized and thoroughly characterized by Nuclear Magnetic Resonance (NMR), Gel Permeation Chromatography (GPC), Fourier Transform Infrared Spectroscopy (FTIR). Notably, the as‐prepared porphyrin‐cored star‐shaped copolymer could self‐assembly into different structures determined by transmission electron microscopy (TEM) and dynamic lighting scattering (DLS), which provides the great potential of using this well‐defined photodynamic therapy material for drug delivery system. Particularly, the doxorubicin‐loaded SPPCL‐b‐PEO nanosphere exhibits property of pH‐induced drug release. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40996.  相似文献   

7.
Thermo‐sensitive hydrogels are considered ideal for applications in the biomedical fields for their biocompatibility, flexibility, tissue‐like water content, and reversible gelation property. By adjusting sufficient hydrophilic–hydrophobic balance in block copolymer structure, thermogel's critical gelation temperature (CGT) can be modified to be near the physiological temperature, which makes it an appealing candidate for in situ gel depot. In this study, we report successful syntheses of novel multiple block copolymer compounds, denoted as dual‐stimuli sensitive polymers (DSSPs), by copolymerizing Pluronic P104 (7100 Da) and 2,2‐bis(aminoethoxy)propane (BAP) using diisocyanate linkers, l ‐lysine ethyl ester diisocyanate (DSSP‐1), and 1,6‐hexamethylene diisocyanate (DSSP‐2). Through effective elongation of polymer chain lengths (DSSP‐1: 41,760 Da, DSSP‐2: 41,230 Da), Pluronic P104's reversible thermal gelation properties were enhanced, as demonstrated by lowered CGTs (DSSP‐1: 36 °C, DSSP‐2: 38.7 °C; 15 wt %) that is near the physiological temperature. Furthermore, integration of acid‐labile BAP allowed rapid pH‐dependent degradation of the polymer, which was displayed by gel permeation chromatography and release profiles of nile red and irinotecan from polymeric micelles and gels, respectively. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46552.  相似文献   

8.
A novel type of reduction‐sensitive graft copolymers, chitosan‐S‐S‐poly(ε‐caprolactone) (CS‐S‐S‐PCL, here ‐S‐S‐ means PCL was conjugated onto chitosan backbone through disulfide linkage), was synthesized through a convenient route using dithiodipropionic anhydride (DTDPA) as a disulfide donor. Reaction of hydroxy‐terminated poly(ε‐caprolactone) (PCL) with DTDPA quantitatively yielded DTDPA functionalized PCL (PCL‐S‐S‐COOH). The disulfide‐containing polyester was regioselectively conjugated onto the hydroxy groups of chitosan under mild and homogeneous conditions, utilizing dodecyl sulfate‐chitosan complexes (SCC) as an intermediate. The self‐assembly and Doxorubicin (Dox) release behavior of the copolymers were investigated. Spherical micelles could be formed through self‐assembly of CS‐S‐S‐PCL in aqueous media. The reduction‐sensitive behavior of CS‐S‐S‐PCL micelles was investigated by using Dithiothreitol (DTT) as a reductive reagent. In the presence of 10 mM DTT, the micelles gradually lost their aggregation stability and were precipitated out after four days. In addition, the Dox release was accelerated when the micelles were treated with DTT. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

9.
To obtain polyurethane micelles with excellent stability as a drug delivery carrier, star‐shaped amphiphilic block polyurethane (SAPU) was successfully synthesized by the ‘arm‐first’ method, using methoxypoly(ethylene glycol) and poly(ε‐caprolactone) diol as soft segments, hexamethylene diisocyanate as hard segments and pentaerythritol as the core. The structure of the SAPU was characterized by Fourier transform infrared spectroscopy, 1H NMR spectroscopy and gel permeation chromatography. The micellization behaviour and micelle properties of SAPU were measured by the pyrene fluorescence probe technique, 1H NMR, SEM and dynamic light scattering. The results indicated that SAPU could self‐assemble to form nanomicelles in aqueous solution and that the micelles showed excellent stability upon dilution and storage. Indometacin as a model drug could be incorporated into SAPU micelles and be released sustainedly. Meanwhile, the hydrophilic segment content and the molecular weight of SAPU had effects on the micelle properties. In addition, SAPU exhibited good cytocompatibility estimated by methylthiazole‐tetrazolium assay. © 2016 Society of Chemical Industry  相似文献   

10.
A series of biodegradable amphiphilic A‐B‐A type triblock copolymers P(BLA‐PEG‐BLA), composed of hydrophilic poly(ethylene glycol) (PEG) as a middle block component (B) and hydrophobic poly(β‐benzyl‐L ‐aspartate) as outer polypeptide block components (A), were synthesized by copolymerization of β‐benzyl‐L ‐aspartate N‐carboxy anhydride (BLA‐NCA) and the diaminated PEG with the primary amino groups capped at both ends. These P(BLA‐PEG‐BLA) copolymers were characterized by 1H‐NMR, DSC, and GPC. The triblock copolymers were used to prepare three kinds of drug delivery systems including Norfloxacin (INN)‐incorporated P(BLA‐PEG‐BLA) microparticles and tablets. The morphologies of the microparticles were characterized by SEM. The in vitro release properties of the microparticles and tablets in PBS were also evaluated. A mathematical model, which incorporates a linear first‐order dissolution term and the transient Fickian diffusion equation, was developed to account for the kinetics of drug release from the INN‐incorporated P(BLA‐PEG‐BLA) microparticles. The results indicated that the overall release process was well controlled by both drug dissolution and diffusion. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3869–3873, 2004  相似文献   

11.
The use of copolymers grafted on starch for controlled‐release technology is an interesting proposal, since a modification of a natural polymer is more suitable than synthetic polymers because of its biocompatibility and biodegradability. The aim of this paper is to synthesize acrylic polymers grafted on carbohydrates to investigate the release kinetic of different solubility drugs from polymeric matrix systems and to observe the effect of grafted copolymers and drug solubility on the release mechanism. Copolymer variables such as carbohydrate content, stereoregularity of grafted chains, particle size, morphology, sensitivity to hydration, and rheological properties are discussed. Tablets were prepared by direct compression of the graft copolymer and drug. The drugs' release in vitro kinetics was studied by dissolution testing. Drug release from tablets depends on polymer matrix, polymer content, drug, and pH. An increase in drug solubility results in an increase in the rate of dissolution, as in the case of a poor hydrophilic matrix. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 523–536, 2005  相似文献   

12.
This study investigated the effects of drug and polymer molecular weight on release kinetics from poly (g ‐co‐glycolic acid)‐methoxypoly(ethyleneglycol) (PLGA‐mPEG) microspheres. Bovine serum albumin (BSA, 66 kDa), lysozyme (LZ, 13.4 kDa), and vancomycin (VM, 1.45 kDa) were employed as the model drugs, and encapsulated in PLGA‐mPEG microspheres of different molecular weight. Release of macromolecular BSA was mainly dependent on diffusion of drug at/ near the surface of the matrix initially and dependent on degradation of matrix at later stages, while, the small drug of vancomycin seemed to depend totally on diffusion for the duration of the release study. The release behavior of lysozyme was similar to bovine serum albumin, except a shorter lag period. PLGA‐mPEG molecular weight also affected the release behavior of bovine serum albumin and lysozyme, but not obviously. PLGA‐mPEG microspheres in smaller molecular weight seemed to degrade more quickly to obtain a mass lose and matrix erosion, and thus, an accelerated release rate of bovine serum albumin and lysozyme. Vancomycin released much faster than bovine serum albumin and lysozyme, and exhibited no lag period, as it is thought to be diffusion‐controlled. Besides, vancomycin showed no difference in release behavior as PLGA‐mPEG molecular weight change. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41431.  相似文献   

13.
A novel stimuli‐responsive magnetite nanohydrogel (MNHG), namely [poly(ethylene glycol)‐block‐poly(N‐isopropylacrylamide‐co‐maleic anhydride)2]‐graft‐poly(ethylene glycol)/Fe3O4 [PEG‐b‐(PNIPAAm‐co‐PMA)2]‐g‐PEG/Fe3O4, was successfully developed. For this purpose, NIPAAm and MA monomers were block copolymerized onto PEG‐based macroinitiator through atom transfer radical polymerization technique to produce PEG‐b‐(PNIPAAm‐co‐PMA)2. The synthesized Y‐shaped terpolymer was crosslinked through the esterification of maleic anhydride units using PEG chains to afford a hydrogel. Afterward, magnetite nanoparticles were incorporated into the synthesized hydrogel through the physical interactions. The chemical structures of all synthesized samples were characterized using Fourier transform infrared and proton nuclear magnetic resonance spectroscopies. Morphology, thermal stability, size, and magnetic properties of the synthesized MNHG were investigated. In addition, the doxorubicin hydrochloride loading and encapsulation efficiencies as well as stimuli‐responsive drug release ability of the synthesized MNHG were also evaluated. The drug‐loaded MNHG at physiological condition exhibited negligible drug release values. In contrast, at acidic (pH 5.3) condition and a little bit higher temperature (41 °C) the developed MNHG showed higher drug release values, which qualified it for cancer chemotherapy due to especial physiology of cancerous tissue in comparison with the surrounding normal tissue. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46657.  相似文献   

14.
Amphiphilic graft copolymers were synthesized using chitosan with varying substitution degrees of methoxy polyethylene glycol and palmitic acid. FT‐IR, 1H‐NMR, differential scanning calorimetry, and elemental analysis showed successful chitosan modification. Amphiphilic copolymers are able to produce nano ssemblies with low critical micelle concentration (CMC). It was demonstrated that particle size (PS) analysis and drug solubilization methods could be used to determine CMC, beside fluorescent pyrene assay. Paclitaxel was efficiently loaded (up to 12.8%) without significant change in the nanomicelles’ PS. In addition, without significant change in size and loading, nanomicelles could be freeze‐dried. Hemolysis assay exhibited biocompatibility of copolymers and cell cytotoxicity assay on MCF‐7 cell line showing the encapsulated drug had a higher cytotoxic effect. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43233.  相似文献   

15.
A series of thermoresponsive triblock copolymers, methoxy poly(ethylene oxide)‐b‐poly(ε‐caprolactone)‐b‐poly(N‐isopropylacrylamide) (mPEO‐b‐PCL‐b‐PNIPAM), with different PCL and PNIPAM block lengths, were synthesized by a combination of ring opening polymerization and reversible addition‐fragmentation chain transfer polymerization techniques. The triblock copolymers undergo self‐assembly in aqueous solutions forming stable nanovesicles of various sizes with a lipid membrane structure similar to body cells as revealed by transmission electron microscopy. The nanovesicle is thermoresponsive, that is, its size is tunable using the temperature as a switch: shrinks at a temperature above the lower critical solution temperature (LCST) and expands at a temperature below the LCST. The corresponding LCST of the triblock copolymers is adjustable by varying the PNIAM segment length as well as the PCL segment length and covers a range from 33.9 to 41.0°C in water. The diameter of nanovesicles for mPEO3kb‐PCL5kb‐PNIPAM13.2k is about 177.7 nm below the LCST and 138.9 nm above the LCST, as determined by dynamic light scattering. It was demonstrated using indomethacin, a popular anti‐inflammation medicine, that the triblock copolymers can effectively act as a drug release carrier under the right human physiological conditions, that is, store the drug at a lower temperature and release it at a higher temperature, possibly targeting at the lesion sites of human body. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41361.  相似文献   

16.
Liposomes of antiviral drug(acyclovir) prepared by rotary evaporation method were incorporated into two bioadhesive polymers, carbopol and HPMC and freeze dried to obtain a unit dosage form. The liposomes, liposomal gels and freeze dried rods were evaluated for various parameters. TEM analysis showed the formation of unilamellar liposomes with a mean diameter ranging from 0.9 μm to 1.2 μm. As the cholesterol content increases from 0.5% to 2%w/w, the entrapment efficiency and vesicle size increased. Carbopol gels exhibited higher viscosity, spreadability, mucoadhesiveness than HPMC gels. The redipsersion of freeze dried forms in SVF was found to be slow and its ex‐vivo retention time was found to be 12 hrs while acyclovir gel retained only for 8.25 hrs. The tablet and gel released 96.93±0.15% acyclovir within 6 hrs and 92.31±0.31% by 8 hrs respectively while freeze dried forms could sustain the release upto 12 hrs. From the stability studies the optimum storage condition was found to be 4‐8°C. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39804.  相似文献   

17.
pH‐Sensitive organic–inorganic copolymers of hydrogels were developed as drug delivery systems (DDS) to improve the swelling behavior of polyacrylic acid (PAA). They were represented through FTIR, TGA and XRD characterization which revealed that the functional groups of methacryl‐phenyl polyhedral oligomeric silsesquioxane (POSS) were successfully added to the acrylic acid (AA) molecular chains through radical solution polymerization. The DSC test results indicate that the addition of POSS could improve the thermal properties of the copolymers. The swelling properties at the pH range of 1.25–8.01 exhibited the pH sensitivity of POSS/AA copolymers (POSS‐co‐AA) and the lower swelling ratio in acidic conditions indicated that the DDS had low amount of release in SGF; this phenomenon suggested that the copolymer was available as DDS of theophylline. And it was proved by drug release curve and scanning electron microscopy. Since the addition of POSS reduced the release rate of theophylline and prolonged the release time of the drug, the concentration range of theophylline could remain low for an extended duration. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
Poly(glycolide‐co‐trimethylene carbonate) is available commercially as a monofilament suture known as Maxon. The literature has shown that Maxon sutures possess a slow degradation rate of about 7 months and exhibit relatively high mechanical strength in comparison with other absorbable sutures. However, very few articles are available on the degradation of unoriented Maxon. This study was designed to explore the chemical and physical aspects of the degradation of unoriented Maxon and its potential as a drug‐release device. Several analytical techniques were used, including mass measurements, simultaneous small‐angle X‐ray scattering and wide‐angle X‐ray scattering, and thermoporometry. Magnetic resonance imaging and drug‐release measurements were carried out with UV spectroscopy. The results suggest that unoriented suture‐based Maxon undergoes multiple stages of hydrolytic degradation, which involve hydration, and active and postactive periods. The drug‐release mechanism is controlled by diffusion in the early degradation stages and polymer erosion in the later stages of release. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 475–486, 2005  相似文献   

19.
In this work, ring‐opening polymerization and reversible addition‐fragmentation chain transfer polymerization (RAFT) have been employed for the production of block copolymers where the backbone is brushed with poly(ethylene glycol) (PEG) and polyester chains. Because of their amphiphilic properties, they are able to self‐assemble in water, forming micelles. Molecular dynamics simulations have been accomplished to study the behavior of the copolymer single chain in water, and the self‐assembly properties have been characterized and correlated to the copolymer structure in terms of critical micellar concentration and particle size. As a proof of their flexibility, these materials have been employed for the production of polymer–lipid hybrid nanoparticles with tunable dimensions (from 120 to 260 nm) adopted for the controlled release of anticancer compounds (paclitaxel and curcumin). © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43084.  相似文献   

20.
A mixed micellar system of novel function was designed and synthesized by co‐assembling TAT (cell penetrating peptide)‐modified poly (ethylene glycol)‐poly(l ‐lactide) (PEG‐PLA) copolymer with the drug‐conjugated poly(ethylene glycol)‐b‐poly(l‐ lactide‐co‐2‐methyl‐2‐carboxyl‐propylene carbonate) (mPEG‐b‐P(LA‐co‐MCC)) copolymer. UV‐Vis, Matrix‐assisted laser desorption/ionization time‐of‐flight, and XPS were used to ensure the successful modification of the copolymers with TAT and anti‐tumor drugs. The size of spherical nanomicelles increased from 50 to 60 nm as of empty polymeric micelles to 100–150 nm as of drug‐loaded ones, determined by dynamic light scattering and TEM. Daunorubicin was selected as model drug for in vitro evaluations on different cell lines. 3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay clearly indicated an improved cell growth inhibition of the TAT‐modified mixed micelles. While green fluorescent protein was used as a marker for the mixed micelle, small amount of DMSO was necessary to enhance the accumulation of the mixed micelles in cell lines Caski. Mediated by TAT, mixed micelles containing Apoptin (a tumor‐specific apoptosis drug) showed higher level of tumor cell internalization and growth inhibition than that of mixed micelles without TAT modification. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4598–4607, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号