首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
BACKGROUND: The first stage of the cork industrial process generates great volumes of wastewater with moderate to high organic pollutant content that must be purified using different procedures, such as filtration by membranes. RESULTS: The tangential filtration of these wastewaters was studied using two different laboratory equipments. In the first one, three ultrafiltration (UF) membranes were tested, with molecular weight cut‐off (MWCO) 100 kDa and 30 kDa, and two operating modes were used: total recycling of permeate and retentate streams, and in continuous mode, without recycling both streams. In the total recycling UF experiments, the influence of the operating variables on the permeate flux was first established. The effectiveness of the different membranes was determined by evaluating the rejection coefficients for several parameters that measure the global pollutant content of the effluent. The values found for these rejection coefficients were in the following order: ellagic acid and color > absorbance at 254 nm > tannic content > COD (chemical oxygen demand). In the continuous mode experiments, the fouling mechanism for each membrane was established by fitting the experimental data to various filtration fouling models given in the literature. The operating mode in the second equipment was batch concentration, and additional experiments were carried out with an UF membrane (2 kDa), and with a NF membrane (with MWCO in the range 150–300 Da). CONCLUSIONS: The three operating modes tested provided different rejection levels of organic matter; among them, the most effective procedure tested was batch concentration mode using a NF membrane. Copyright © 2007 Society of Chemical Industry  相似文献   

2.
BACKGROUND: Succinic acid is an important precursor chemical for the synthesis of high value‐added products. In this work, ultrafiltration was first investigated to clarify succinic acid fermentation broth by integrating fermentation and separation and removal processes of the product in situ. Four different ultrafiltration membranes (PES 100 kDa, PES 30 kDa, PES 10 kDa and RC 10 kDa) were used in this work. RESULTS: Results indicate that ultrafiltration is feasible for clarifying succinic acid fermentation broth. Almost all the microorganism cells (99.6%) were removed from the fermentation broth. Proteins were also removed effectively by all the membranes studied. The removal rate was 79.86% for PES 100 kDa, 86.43% for PES 30 kDa, 86.83% for PES 10 kDa, and 80.06% for the RC 10 kDa. After ultrafiltration, a clearer permeate was obtained compared with that from centrifugation. CONCLUSION: Membranes operating at high flux are always susceptible to rapid fouling. Compared with molecular weight cut‐offs (MWCO), membrane material has a significant influence on the flux. Membrane flux measured in this study shows industrial potential of this technology in treatment of succinic acid fermentation broth. © 2012 Society of Chemical Industry  相似文献   

3.
《分离科学与技术》2012,47(13):1849-1856
The dead-end ultrafiltration (UF) of coagulation-pretreated fermentation broth of Serratia marcescens SMΔR for prodigiosin recovery was studied. Experiments were performed using different types (regenerated cellulose, YM; polyethersulfone, PES) and molecular weight cut-offs (MWCOs, 1–10 kDa) of the membranes, feed concentrations of prodigiosin (300–1000 mg/L), applied pressures (68.9–206.8 kPa), and stirring speeds (200–400 rpm). With the same MWCO, the YM membrane had a higher retention of prodigiosin and a lower flux than the PES membrane. A two-fold concentration of prodigiosin was observed in the retentate using a 1-kDa YM membrane compared to the concentration in the permeate using a 10-kDa YM membrane. In addition, the extent of membrane fouling was quantitatively analyzed in terms of the modified fouling index. Flux decline in the present batch UF process was mainly due to cake layer formation and partly due to pore blocking. A two-stage UF process was proposed for this purpose, with 81% recovery yield and four-fold concentration.  相似文献   

4.
Concentration and retention of a rod-shaped virus during tangential flow ultrafiltration (UF) was assessed to evaluate the potential of membrane-based downstream methods with advantages such as easy scale-up for industrial processes. A recombinant baculovirus of the non-spherical Autographa californica M nucleopolyhedrovirus (AcMNPV), vHSGFP, expressing egfp was filtered using polyethersulfone membranes ranging from 30 to 1000 kDa molecular weight cut-off (MWCO). A 20-fold virus concentration was achieved when a membrane cut-off range of 100 to 1000 kDa was tested. Fouling was observed and cake formation and pore plugging were postulated as concurrent causes with different impact depending on the MWCO. A reduction of virus concentration in the range of 2 to 5 log units in the permeate was observed illustrating the potential of membrane-based virus filtration as a useful unit operation in downstream processing.  相似文献   

5.
The effect of sodium bromide (NaBr) on performance and characteristics of ultrafiltration (UF) membranes was studied. Asymmetric UF membranes were prepared by phase inversion technique from a multicomponent dope polymer solution consisting of the polymer; polyethersulfone (PES), solvent; N, N‐dimethylformamide (DMF) and NaBr as micromolecular additive. The dissolution of PES‐DMF‐NaBr was carried out using microwave irradiation technique to induce rapid dissolution through minimal heating time. Various concentrations of NaBr were mixed with PES in the range of 1–5 wt % and its influence on membrane characteristics such as surface hydrophilicity was measured by contact angle and the performance in terms of water flux and rejection rates were evaluated using micromolecular test substances. The morphology and streaming potential of PES UF membranes were analyzed using scanning electron microscopy (SEM) and ζ‐potential measurement, respectively. Overall, the results suggest that the membrane consisting of 1 wt % NaBr exhibits the best performance in terms of rejection and flux rates with molecular weight cutoff (MWCO) of 45 kDa and mean pore size of 6 nm. The membrane with the 1 wt % addition of NaBr demonstrates most negative charge which indicates less fouling characteristics and displays approximately three times higher permeation. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

6.
Polyethersulfone (PES) ultrafiltration (UF) membranes with and without surface‐modifying macromolecules (SMMs) were prepared and characterized in terms of the mean pore size and pore‐size distribution, surface porosity, and pore density. The results demonstrated that both the mean pore size and the molecular weight cutoff (MWCO) of the SMM‐modified membranes are lower than those of the corresponding unmodified ones. Membrane fouling tests with humic acid as the foulant indicated that the permeate flux reduction of the SMM‐modified membranes was much less than that of the unmodified ones. Therefore, fouling was more severe for the unmodified membranes. Moreover, the dry weight of the humic acid deposited on the membrane surface was considerably higher for the unmodified membranes. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 3132–3138, 2003  相似文献   

7.
超滤膜分离工艺处理大豆乳清蛋白废水的效能   总被引:3,自引:2,他引:3       下载免费PDF全文
冯晓  任南琪  陈兆波 《化工学报》2009,60(6):1477-1486
为考察膜分离技术处理大豆乳清蛋白废水的效能及其运行特征,采用再生纤维膜(RC)和聚醚砜膜(PES)进行试验,每种膜的截留分子量(MWCO)分别选定为5000、10000和30000。试验考察了各种膜的渗透通量、膜衰减系数、蛋白截留率、总糖透过率随时间的变化情况,结果表明:截留分子量为10000的RC超滤膜,在渗透通量、蛋白截留率、总糖透过率、膜衰减系数等方面皆优于其他超滤膜。超滤的最佳工艺条件为压力30kPa、pH值9、浓缩比3∶1、温度20℃,膜渗透通量31.2 L·m-2·h-1,蛋白截留率78.46%,蛋白含量51.37%。在曲线拟合和BP神经网络的基础上,建立了不同条件下膜渗透通量随时间变化的数学模型,模型模拟结果与试验结果基本一致,这说明基于曲线拟合和BP神经网络建立模型是可行的。  相似文献   

8.
In this work, the ultrafiltration of macromolecules was analysed using a response surface methodological approach. The behaviour of two different inorganic membranes was investigated. The membranes selected were a Carbosep M2 membrane (Orelis, France) with a molecular weight cut-off (MWCO) of 15 kDa and a Tami MSKT membrane (Tami Industries, France) with a MWCO of 5 kDa. The solute employed was polyethylene glycol of 35 kDa molecular weight. The influence of transmembrane pressure (0.1, 0.2, 0.3, 0.4 and 0.5 MPa), crossflow velocity (1, 2 and 3 m/s) and feed concentration (5, 10 and 15 g/L) on permeate flux and permeate flux decline was investigated. Analysis of variance was proved to be a useful tool to determine the effect of operating variables on both parameters. The method used demonstrated the presence of coupled effects between factors as well as squared effects that are relevant to the ultrafiltration process. The surface contours obtained from fitted models were used for the optimization of the operating conditions. The goal was to simultaneously maximize the average permeate flux and minimize the flux decline. The optimal operating conditions for the Carbosep M2 membrane were a transmembrane pressure of 0.38 MPa and a crossflow velocity of 3 m/s. The optimal operating conditions for the Tami MSKT membrane could not be determined by means of multiple response optimization due to the low accuracy of the regression model obtained for the cumulative permeate flux decline (SFD) response variable.  相似文献   

9.
BACKGROUND: In the removal of pharmaceuticals present in aquatic systems by membrane processes, some important issues must be explored in order to obtain a better knowledge of the global process. Among these issues, a better understanding of the influences of the operating parameters on the membrane flux, an analysis of membrane resistances and fouling, and determination of the removal of specific substances, must be studied. RESULTS: Four selected pharmaceuticals (amoxicillin, naproxen, metoprolol and phenacetin) were subjected to ultrafiltration (UF) and nanofiltration (NF) processes for their removal from several water matrices. The determined permeate fluxes at the steady state were affected by the main operating conditions: molecular weight cut‐off (MWCO) of the membrane, transmembrane pressure TMP, cross‐flow velocity and temperature. The retention coefficients with the UF membranes followed the sequence naproxen > metoprolol > amoxicillin > phenacetin, and with the NF membranes, followed the trend: amoxicillin > naproxen > metoprolol > phenacetin, due to the role of other mechanisms such as size exclusion and electrostatic repulsion. In the case of the selected water matrices, the retention coefficient was referred to some quality parameters (total organic carbon, chemical oxygen demand and absorbance at 254 nm), leading to moderate (UF) or high (NF) removals of the organic matter content. CONCLUSIONS: The NF CK membrane achieved the highest retention of these pharmaceuticals (excepting phenacetin), and provided retentions for quality parameters around 80% in the four water systems tested. Copyright © 2011 Society of Chemical Industry  相似文献   

10.
Rice brans were treated with a protease together with a disulfide bond-breaking agent (Na2SO3) to achieve a 2–4% peptide bond hydrolysis (DH). Ultrafiltration (UF) with 3 kDa molecular weight cut-off (MWCO) membrane led to substantial loss of feed protein due to permeation. Using 1 kDa MWCO membrane increased protein yields, but it was not effective in purifying the protein hydrolysates despite the increase in membrane area and operating time. The efficiency of this UF process can be improved using a larger MWCO membrane (e.g., 2 kDa MWCO), which may facilitate complete removal of phytate. Based on disparity of molecular sizes, use of phytase may also increase purity of protein retentates and allow the recovery of functional inositol phosphates in permeates. The presence of Na2SO3 during proteolysis to 2% DH of preheated bran (100°C, 10 min) repaired the damage caused by preheat treatment by increasing protein recovery but increased the concentration of small peptides in hydrolysates, i.e., <1 kDa, particularly for highly aggregated proteins. Heat treatment is necessary to stabilize rice bran, but the sulfite treatment may be avoided to increase UF yield and purity of protein retentates and allow higher DH values for hydrolysis of stabilized brans. Accordingly, this UF process can be an efficient method for recovering high-value components from rice bran, an underutilized rice milling co-product, for many industrial applications. Presented in part at the American Oil Chemists' Society Annual Meeting, Seattle, Washington, May 11–14, 1997.  相似文献   

11.
采用截留分子量为10kDa和50kDa的超滤膜,对不同分子量的聚乙二醇(PEG)溶液进行了截留实验。考察了超滤对不同分子量PEG的去除效果,膜的截留分子量、操作条件及料液浓度对PEG去除效果的影响,讨论了操作压力和过滤时间对超滤膜过滤通量的影响,分析了超滤(UF)对PEG的去除机理和超滤膜的污染机理。  相似文献   

12.
Ani Idris  Iqbal Ahmed 《Desalination》2009,249(2):541-2283
The objective of this research is to evaluate the performance of the polyethersulfone (PES) hollow fiber ultrafiltration membranes spun from LiBr doped solutions prepared using the newly developed microwave heating technique. In addition the resultant hollow fiber membranes were introduced to a new post-treatment method where the membranes were placed in water and irradiated using the microwave technique. Various concentrations of the additive, LiBr, (1-4 wt.%) were added into the PES dope solutions. The dissolution of PES and LiBr in DMF was facilitated by the microwave heating technique. The performance of the membranes was evaluated in terms of pure water permeation and polyethylene glycol separation and its molecular weight cutoff (MWCO) was determined. The results revealed that the microwave post-treatment technique was proven to be effective in producing higher performance membranes. The best performance was obtained at 3% LiBr with MWCO at 90% rejection in the range of 2.83 kDa and high flux range of 222.18 (Lm− 2 h− 1 bar− 1). LiBr interacts in the membrane matrix resulting in the enhancement of the hydrophilic property of the membrane and this is confirmed by the contact angle measurement.  相似文献   

13.
A rigorous surface renewal model has been developed describing the aspects of mass transfer in a rotating disk-membrane (RDM) ultrafiltration cell. The model takes into consideration of two distribution functions of random surface elements, one with respect to their point of origin and the other related to the corresponding residence time on the membrane surface. The back transport flux and the permeate flux are evaluated at the membrane surface in order to develop a surface component balance equation. The component balance equation and a flux-rejection relationship arising from irreversible thermodynamics are solved simultaneously to develop a dynamic simulation. The simulation elucidates on permeate flux, membrane surface concentration and the permeate concentration under various operating conditions of transmembrane pressure, bulk concentration, membrane and stirrer speeds. For validation of the proposed model, experiments were conducted with bovine serum albumin (BSA)/water as feed in a standard rotating disk membrane module fitted with polyethersulfone (PES) membrane of 30 kDa molecular weight cut-off (MWCO). The model predicted flux and permeate concentration was found to be in good agreement with the experimental data, and the maximum absolute deviation for both cases was found to be well within ±5%.  相似文献   

14.
Ultrafiltration: a means for decolorization of cane sugar solution   总被引:1,自引:0,他引:1  
Membrane ultrafiltration was used for clarification as well as for decolorization of raw brown sugar obtained from the Indian sugar industry. Experimental results were obtained using sugar solutions of 28 and 46°Brix and mineral membranes of 20 nm, 5 and 1 kDa molecular weight cut-off (MWCO) on an industrial size pilot plant under different operating conditions. It was found that, even with the membrane of MWCO of 1 kDa, the maximum color removal was limited to 58.67% and steady-state permeate flux was only 29 1/h m2 for the 46°Brix sugar solution. Empirical relationships between membrane performance (for decolorization and clarification) and membrane pore diameter were obtained from the experimental results. In order to obtain very high quality white crystalline sugar, further processing with adsorbents or use of an ion-exchange technique is required.  相似文献   

15.
The aim of this study was to fractionate pre-filtered surface water using a 3.5 and a 10 kDa dialysis membrane, and to compare the rate of fouling and the fouling reversibility/irreversibility of the NOM fractions. Trial dialyses (3.5 and 10 kDa) were carried out for 6 and 21 days with pre-filtered surface water using synthetic surface water as dialysate. The aim of the trials was to optimize the dialysis process for NOM fractionation. DOC, Ca2+, Mg2+, soluble silica and bacteria were monitored at intervals during the dialysis process. Thereafter, the various NOM fractions (with low and high Ca2+) were fed to a miniature UF system operated at a constant flux of 138.5 L/m2 h, filtration cycle times of 31.5 min and backwash duration of 1.75 min. A PES/PSV hollow fiber UF membrane (MWCO 100 kDa) with a surface area of 0.0125 m2 was employed for the filtration tests (X-Flow). Transmembrane pressure (TMP) and UF feed and permeate (LC-OCD) were monitored at regular intervals. For a dialysate recirculation of 95 L/h, sample to dialysate ratio of 5.2:80 L and a dialysate change frequency of 3 times per 24 h, the shortest duration of dialysis was about 6–7 days for both 3.5 and 10 kDa dialyses membranes. The removal of organic carbon (OC) increased with dialysis duration and MWCO of the bags. The biopolymer fraction increased from 120% to 240% when the duration of dialysis was increased from 6 days (1.1 mg DOC/L, 151 mg Ca/L) to 21 days (0.82 mg DOC/L, 133 mg Ca/L) with the 10 kDa dialysis membrane. The increased biopolymer fraction in the NOM sample that was dialyzed for 21 days resulted in a doubling of the fouling rate from 3.5 to 6.6 mbar/min per mg DOC/L. The other NOM fractions (humics and building blocks) and the Ca/DOC ratio was more or less the same in both NOM samples suggesting that biopolymers were the major cause of UF fouling.  相似文献   

16.
Textile industries are rated as the most polluting among all industrial sectors taking into account both wastewater volume and composition. In order to be able to reuse these effluents, membrane technologies have been proven as a viable alternative. However, these technologies show some drawbacks, such as the retentate stream management and the worsening of their performance due to membrane fouling. Therefore, effluents must be pre-treated in order to prevent fouling. Membrane technologies also provide some alternatives for these pre-treatments by means of the application of ceramic ultrafiltration among others.This work studies the performance of ceramic membranes by carrying out experiments with three commercial ceramic membranes with molecular weight cut-offs (MWCO) of 30, 50 and 150 kDa, respectively. Moreover, the effect of cross-flow velocity (CFV) was studied by performing the essays at different flow velocities of 3, 4 and 5 m/s.According to the obtained results, ceramic UF membranes proved to be a feasible pre-treatment alternative. Permeate flux increased as flow velocity was increased for most of the cases, owing to the fact that the cake layer formation was limited. Furthermore, flux decline along operating time was negligible for the higher flow velocities, whereas it was noticeable for the lowest flow velocity tested. For the lowest MWCO analyzed, lower cross-flow velocities were needed in order to limit the cake layer formation and reach the steady-state. This implies that, although fouling was significant for all the three molecular weight cut-off studied, it was much more noticeable when MWCO was increased. Slightly better results in terms of permeate quality were achieved as MWCO was lower. In addition, higher chemical oxygen demand (COD) and conductivity retention coefficients were obtained for the lowest cross-flow velocity. Turbidity and color removals seemed to be more influenced by water composition than CFV, with rejections higher than 99% and between 84 and 98%, respectively.  相似文献   

17.
The new polyethersulfone (PES) based ultrafiltration membranes were formed using a two stage process of dry and wet phase inversion in non solvent coagulation bath. The effects of three different solvents such as, N,N-dimethylformamide (DMF), N-methyl-2-pyrrolidone (NMP) and Dimethyl sulphoxide (DMSO) of 82.5% and 85% concentrations on the performance of final membranes were extensively investigated. Scanning electron microscopy (SEM) image results proved that PES membranes with an asymmetric structure were successfully formed. The number of pores formed on the top layer of PES membranes using above-mentioned three solvents was the result of the combined effect of the thermodynamic properties of the system (composition, concentrations, and phase behaviour) and membrane formation kinetics, whereas, the formation of the macroporous sub layer of those membranes was controlled by the diffusion rate of solvent–nonsolvent. The flux of pure water, membrane resistance, mechanical stability, molecular weight cut-off (MWCO) and separation performance of the PES membranes were studied. Separation of metal ions from aqueous solutions was studied for Ni(II), Cu(II) and Cr(III) using two complexing polymer ligands: polyvinyl alcohol (PVA) and poly(diallyldimethylammonium chloride) (PDDA).The separation and permeate rate (flux) efficiencies of the new membranes are compared using different solvents and different PES/solvent compositions.  相似文献   

18.
Sangyoup Lee  Jaeweon Cho   《Desalination》2004,160(3):223-232
Ceramic membranes were compared with polymeric membranes with respect to natural organic matter (NOM) removal using two removal mechanisms (i.e., size exclusion and charge repulsion). NOM properties including molecular weight and molecular structure, at different charge densities, were examined, along with membrane characteristics, including molecular weight cut-off (MWCO) and surface charge. Integrated analyses of both NOM and membrane characteristics provided information for membrane evaluation of different membrane materials and configurations (i.e., tubular vs. flat sheet type). A ceramic tight-ultrafiltration (UF) membrane showed the same potential as a similar nanofiltration (NF) polymeric membrane, in terms of the minimization of haloacetic acid (HAA) formation. Moreover, a ceramic OF membrane with a MWCO of 8000 Daltons showed almost the same behavior as an equitable polymeric UF membrane with a MW CO of 8000 Daltons in terms of NOM removal.  相似文献   

19.
Clarification of glycerin-rich solution is one of the potential applications of membrane within the oleochemical industry. However, one of the barriers in successfully utilizing the use of membranes such as ultrafiltration (UF) has been due to the fouling. In this work, flux decline during ultrafiltration of the glycerin-rich solutions was studied by using commercialized polymeric polyethersulphone (PES) membrane. Influence of fatty acids as foulants model (palmitic acid, stearic acid and oleic acid), pH of feed solution (3-10) and molecular weight cut-off (5 kDa, 20 kDa and 25 kDa) were analyzed. All the experiments were performed at constant pressure (2 bar) and temperature (40 °C). The Hermia's model was used to analyze the fouling mechanism during the flux decline which involve cake layer model due to adsorption of solute as well as pore blocking model. All the different types of flux decline kinetics were found to occur during the permeation of glycerin-rich solutions. However, the contribution of resistance due to cake layer formation was small for all the conditions studied. The fouling mechanisms were found to depend on the hydrophobicity of the PES membrane itself as well as the nature of foulants used in the study.  相似文献   

20.
研究了陶瓷膜在薏苡仁混合油脱胶中的应用。研究了不同截留相对分子质量陶瓷膜的脱胶效果以及过膜压力、料液温度和运行时间对膜通量的影响,并对陶瓷膜清洗工艺进行探索。选择截留相对分子质量15 000的超滤膜,在50 ℃和0.5 MPa下能够去除混合油中90%磷脂。用碱洗和次氯酸钠清洗能够彻底去除膜污染,恢复膜通量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号