首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intercalated and exfoliated polystyrene/nano‐clay composites were prepared by mechanical blending and in situ polymerization respectively. The composites were then foamed by using CO2 as the foaming agent in an extrusion foaming process. The resulting foam structure is compared with that of pure polystyrene and polystyrene/talc composite. At a screw rotation speed of 10 rpm and a die temperature of 200°C, the addition of a small amount (i.e., 5 wt%) of intercalated nano‐clay greatly reduces cell size from 25.3 to 11.1 μm and increases cell density from 2.7 × 107 to 2.8 × 108 cells/cm3. Once exfoliated, the nanocomposite exhibits the highest cell density (1.5 × 109 cells/cm3) and smallest cell size (4.9 μm) at the same particle concentration. Compared with polystyrene foams, the nanocomposite foams exhibit higher tensile modulus, improved fire retardance, and better barrier property. Combining nanocomposites and the extrusion foaming process provides a new technique for the design and control of cell structure in microcellular foams.  相似文献   

2.
A poly(methyl methacrylate) (PMMA) and nanoclay composite was dispersed into polystyrene (PS) using a twin‐screw extruder. The mixture was then batch foamed with supercritical CO2. It was found that the cell density of foams based on the blend is higher than that based on the weight average of the two pure polymer components at the same foaming conditions. The cell size decreases and the cell density increases with the increase of the PMMA domain size. One explanation is that the large PMMA domains serve as a CO2 reservoir and the nucleation in the PS phase is enhanced by the diffusion of CO2 from the PMMA phase to the PS phase. Very small PMMA domains cannot function as a CO2 reservoir, and so they are not able to facilitate the nucleation. A much higher cell density and smaller cell size were observed when nanoclay was located at the interface of the PMMA and the PS domains, serving as the heterogeneous nucleating agents. POLYM. ENG. SCI., 47:103–111, 2007. © 2007 Society of Plastics Engineers  相似文献   

3.
A strategy of CO2-assisted extrusion foaming of PMMA-based materials was established to minimize both foam density and porosities dimension. First a highly CO2-philic block copolymer (MAM: PMMA-PBA-PMMA) was added in PMMA in order to improve CO2 saturation before foaming. Then the extruding conditions were optimized to maximize CO2 uptake and prevent coalescence. The extruding temperature reduction led to an increase of pressure in the barrel, favorable to cell size reduction. With the combination of material formulation and extruding strategy, very lightweight homogeneous foams with small porosities have been produced. Lightest PMMA micro foams (ρ = 0.06 g cm−3) are demonstrated with 7 wt% CO2 at 130°C and lightest blend micro foams (ρ = 0.04 g cm−3) are obtained at lower temperature (110°C, 7.7 wt% CO2). If MAM allows a reduction of Tfoaming, it also allows a much better cell homogeneity, an increase in cell density (e.g., from 3.6 107 cells cm−3 to 2 to 6 108 cells cm−3) and an overall decrease in cell size (from 100 to 40 μm). These acrylic foams produced through scCO2-assisted extrusion has a much lower density than those ever produced in batch (ρ ≥ 0.2 g cm−3).  相似文献   

4.
In this work we investigated the solid-state supercritical CO2 (scCO2) foaming of poly(?-caprolactone) (PCL), a semi-crystalline, biodegradable polyester, and PCL loaded with 5 wt% of hydroxyapatite (HA) nano-particles.In order to investigate the effect of the thermal history and eventual residue of the crystalline phase on the pore structure of the foams, samples were subjected to three different cooling protocols from the melt, and subsequently foamed by using scCO2 as blowing agent. The foaming process was performed in the 37-40 °C temperature range, melting point of PCL being 60 °C. The saturation pressure, in the range from 10 to 20 MPa, and the foaming time, from 2 to 900 s, were modulated in order to control the final morphology, porosity and pore structure of the foams and, possibly, to amplify the original differences among the different samples.The results of this study demonstrated that by the scCO2 foaming it was possible to produce PCL and PCL-HA foams with homogeneous morphologies at relatively low temperatures. Furthermore, by the appropriate combination of materials properties and foaming parameters, we prepared foams with porosities in the 55-85% range, mean pore size from 40 to 250 μm and pore density from 105 to 108 pore/cm3. Finally, we also proposed a two-step depressurization foaming process for the design of bi-modal and highly interconnected foams suitable as scaffolds for tissue engineering.  相似文献   

5.
Nanocellular foaming of polystyrene (PS) and a polystyrene copolymer (PS‐b‐PFDA) with fluorinated block (1,1,2,2‐tetrahydroperfluorodecyl acrylate block, PFDA) was studied in supercritical CO2 (scCO2) via a one‐step foaming batch process. Atom Transfer Radical Polymerization (ATRP) was used to synthesize all the polymers. Neat PS and PS‐b‐PFDA copolymer samples were produced by extrusion and solid thick plaques were shaped in a hot‐press, and then subsequently foamed in a single‐step foaming process using scCO2 to analyze the effect of the addition of the fluorinated block copolymer in the foaming behaviour of neat PS. Samples were saturated under high pressures of CO2 (30 MPa) at low temperatures (e.g., 0°C) followed by a depressurization at a rate of 5 MPa/min. Foamed materials of neat PS and PS‐b‐PFDA copolymer were produced in the same conditions showing that the presence of high CO2‐philic perfluoro blocks, in the form of submicrometric separated domains in the PS matrix, acts as nucleating agents during the foaming process. The preponderance of the fluorinated blocks in the foaming behavior is evidenced, leading to PS‐b‐PFDA nanocellular foams with cell sizes in the order of 100 nm, and bulk densities about 0.7 g/cm3. The use of fluorinated blocks improve drastically the foam morphology, leading to ultramicro cellular and possibly nanocellular foams with a great homogeneity of the porous structure directly related to the dispersion of highly CO2‐philic fluorinated blocks in the PS matrix. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

6.
Biodegradable foams were successfully prepared from calcium carbonate reinforced poly(propylene carbonate) (PPC/CaCO3) composites using chemical foaming agents. The incorporation of inexpensive CaCO3 into PPC provided a practical way to produce completely biodegradable and cost‐competitive composite foams with densities ranging from 0.05 to 0.93 g/cm3. The effects of foaming temperature, foaming time and CaCO3 content on the fraction void, cell structure and compression property of the composite foams were investigated. We found that the fraction void was strongly dependent on the foaming conditions. Morphological examination of PPC/CaCO3 composite foams revealed that the average cell size increased with increasing both the foaming temperature and the foaming time, whereas the cell density decreased with these increases. Nevertheless, the CaCO3 content showed opposite changing tendency for the average cell size and the cell density because of the heterogeneous nucleation. Finally the introduction of CaCO3 enhanced the compressive strength of the composite foams dramatically, which was associated with well‐developed cell morphology. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:5240–5247, 2006  相似文献   

7.
In this study, we mainly investigate the solid‐state foaming of polyether ether ketone (PEEK) with different crystallinities using supercritical CO2 as a physical blowing agent. The gaseous mass‐transfer and thermophysical behaviors were studied. By altering the parameters of the foaming process, microcellular foams with different cell morphologies were prepared. The effect of crystallization on the cell morphology was also investigated in detail. The results indicate that the crystallization restricts gas diffusion in the material, and the thermophysical behaviors of the saturated PEEK sample with low crystallinity presents two cold crystallization peaks. The cell density decreases and the cell size increases as the saturation pressure increases. The cell density of the microcellular foams prepared under 20 MPa is 1.23 × 1010 cells/cm3, which is almost 10 times compares to that under 8 MPa. The cell size increases as the foaming time extends or the foaming temperature increases. It is interesting that the cell morphology with a bimodal cell‐size distribution is generated when the samples are foamed at temperatures higher than 320°C for a sufficient time. Additionally, nanocellular foams can be obtained from a highly crystallized PEEK after the decrystallization process. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42576.  相似文献   

8.
When polymer blends are foamed by physical foaming agents, such as CO2 or N2, not only the morphology and viscosity of the blend polymers but also the solubility and diffusivity of the physical foaming agents in the polymers determine the cellular structure: closed cell or open cell and monomodal or bimodal. The foam of poly(ethylene glycol) (PEG)/polystyrene (PS) blends shows a unique bimodal (large and small) cellular structure, in which the large‐size cells embrace a PEG particle. Depending on the foaming condition, the average size of the large cells ranges from 40 to 500 μm, whereas that of small cells becomes less than 20 μm, which is smaller than that of neat PS foams. The formation mechanism of the cellular structure has been investigated from the viewpoint of the morphology and viscosity of the blend polymer and the mass‐transfer rate of the physical foaming agent in each polymer phase. The solubility and diffusivity of CO2, which determine the mass‐transfer rate of CO2 from the matrix to the bubbles, were measured by a gravimetric measurement, that is, a magnetic suspension balance. The solubility and diffusivity of CO2 in PS differed from those in PEG: the diffusion coefficient of CO2 in PEG at 110°C was 3.36 × 10?9 m2/s, and that in PS was 2.38 × 10?10 m2/s. Henry's constant in PEG was 5600 cm3 (STP)/(kg MPa) at 110°C, and that in PS was 3100 cm3 (STP)/(kg MPa). These differences in the transport properties, morphology of the blend, and CO2‐induced viscosity depression are the control factors for creating the unique cellular structure in PEG/PS blends. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1899–1906, 2005  相似文献   

9.
The solubility of CO2 in PETG, a glycol-modified PET, was measured at different temperatures and over a broad pressure range, and diffusion coefficients were derived at the corresponding conditions. The solubility of CO2 is quits high. For example, almost 15 wt% CO2 can be dissolved in PETG at 35°C and 6.0 MPa. Consequently, CO2 is good blowing agent for PETG. Cellular foams in the density range of about 0.04 to 1.2 g/cm3 and diameters in the range of about 10 to 150 µm were produced. The foam density and the cell size were found to depend on the foaming temperature and time, with larger cells obtained at higher temperatures or when the sample was foamed for a longer time. The foam density decreased with an increase in the foaming temperature to about 90°C, beyond which the density tended to increase slightly due to the cell collapse or coalescence. The density reduction also depended on the pressure at which the polymer was saturated with CO2; the higher the saturating pressure at a given temperature, the greater the density reduction.  相似文献   

10.
The study aims to produce poly(methyl methacrylate) (PMMA)-based lower density syntactic foams with hollow glass microspheres (HGMs) and to improve their mechanical properties by the addition of polyhedral oligomeric silsesquioxanes (POSSs) while maintaining the thermal properties of the neat polymer. First to understand the effect of POSS addition, PMMA–POSS composites with octaisobutyl and octaphenyl POSS were produced through extrusion. Higher relative flexural and impact strengths were obtained with POSS addition to PMMA. Obtaining more enhanced properties with octaphenyl POSS, PMMA-HGM-POSS hybrid syntactic foams were prepared with this additive. In general, the specific flexural strength and modulus of the PMMA syntactic foams were improved with the POSS loading, while the lower density and thermal properties of the PMMA syntactic foams were maintained. PMMA hybrid syntactic foams with 15 wt % HGMs and 0.25 wt % POSS exhibited 37.6% improvement in the specific flexural modulus with respect to the neat PMMA. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48368.  相似文献   

11.
Polystyrene (PS) and poly(methyl methacrylate) (PMMA) grafted isotactic polypropylene copolymers (iPP-g-PS and iPP-g-PMMA) with well-defined chain structure were synthesized by atom transfer radical polymerization using a branched iPP (iPP-B) as polymerization precursor. The branched and grafted iPP were foamed by using supercritical CO2 as the blowing agent with a batch method. Compared to linear iPP foam, the iPP-B foams had well-defined close cell structure and increased cell density resulted from increased melt strength. Further incorporating PS and PMMA graft chains into iPP-B decreased the crystal size and increased the crystal density of grafted copolymers. In iPP-g-PS foaming, the enhanced heterogeneous nucleation by crystalline/amorphous interface further decreased the cell size, increased the cell density, and uniformized the cell size distribution. In contrast to this, the iPP-g-PMMA foams exhibited the poor cell morphology, i.e., large amount of unfoamed regions and just a few cells distributed among those unfoamed regions, although the crystal size and crystal density of iPP-g-PMMA were similar to those of iPP-g-PS. It was found that the iPP-g-PMMA exhibited PMMA-rich dispersed phase, which had higher CO2 solubility and lower nucleation energy barrier than copolymer matrix did. The preferential cell nucleation within the PMMA-rich phase or at its interface with the matrix accounted for the poor cell morphology. The different effect of phase morphology on the foaming behavior of PS and PMMA grafted copolymers is discussed with the classical nucleation theory.  相似文献   

12.
The potential of using dispersive domains in a polymer blend as a bubble nucleating agent was investigated by exploiting its high dispersibility in a matrix polymer in the molten state and its immiscibility in the solid state. In this experiments, polypropylene (PP) was used as the nucleating agent in polystyrene (PS) and poly(methyl methacrylate) (PMMA) foams at the weight fraction of 10, 20, and 30 wt %. PP creates highly dispersed domains in PS and PMMA matrices during the extrusion processing. The high diffusivity of the physical foaming agent, i.e., CO2 in PP, and the high interfacial tension of PP with PS and PMMA could be beneficial for providing preferential bubble nucleation sites. The experimental results of the pressure quench solid‐state foaming of PS/PP and PMMA/PP blends verified that the dispersed PP could successfully increase the cell density over 106 cells/cm3 for PS/PP and 107 cells/cm3 for PMMA/PP blend and reduce the cell size to 24 μm for PS/PP and 9 μm for PMMA/PP blends foams. The higher interfacial tension between PP and the matrix polymer created a unique cell morphology where dispersed PP particles were trapped inside cells in the foam. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
In this work, nano‐CaCO3 was used to improve the foamability of carbon fiber (CF)/polypropylene (PP) composite in solid‐state foaming using supercritical CO2. The CF content was maintained at 15 wt% and four concentrations of nano‐CaCO3 content, 1, 3, 5 and 8phr, were used. The surface of nano‐CaCO3 was firstly treated by silane coupling agent. By the way, the properties of the nano‐composites with various nano‐CaCO3 contents were analyzed by scanning electron microscope (SEM), differential scanning calorimeter (DSC), and torque rheometer. Before foaming, the gas absorption experiment was done using gravimetric method. Concerning on determination of the foaming conditions, it is found that 175°C and 60s were suitable as foaming temperature and time. Furthermore, we can also find that the foamed composites with 3phr nano‐CaCO3 showed the smallest mean cell diameter and largest cell density compared with the other nano‐CaCO3 contents under the given saturation condition. In addition, the mean cell diameter decreased while cell density increased as saturation pressure increased because of the higher gas solubility in the composites. When the saturation pressure was 25MPa, the mean cell diameter and cell density with 3phr nano‐CaCO3 were 17μm and 2.20×107cells/cm3, respectively. POLYM. COMPOS., 35:1723–1735, 2014. © 2013 Society of Plastics Engineers  相似文献   

14.
Supercritical CO2 as a blowing agent has attracted increasing interest in the preparation of microcellular polyamide 6 (PA6) foams. In this work, we developed the supercritical CO2-assisted method to prepare a series of different microcellular PA6 foams by controlling its crystallization properties in two steps and carefully investigated the corresponding crystallization properties of modified PA6 and foams using various techniques. Initially, a multifunctional epoxy-based chain extender (CE) was used to produce high-melt strength-modified PA6 with improved foaming ability; then, the resulting PA6 was foamed to prepare the microcellular foams of PA6 using supercritical CO2 as a blowing agent in a batch foaming route. The CE effectively enhanced the melt strength of PA6, and CE usage was optimized to obtain a threshold of high branching without crosslinking. The number of crystals was also adjusted by the saturation temperature. Furthermore, these crystals that formed during the saturation process served as high-efficiency bubble nucleating agents and then limited the growth of bubbles at the same time. The microcellular foams of PA6 were successfully obtained with a cell size of 10.0 μm, and cell density of 2.0 × 109 cells/cm3 at the saturation temperature of 225°C.  相似文献   

15.
This study reports the low‐temperature and clean fabrication of porous poly(lactic acid) (PLA) through solid‐state foaming using various mixtures of ethyl lactate (EL) and supercritical CO2 (scCO2) as the blowing agent. Results showed that adding a small amount of EL (up to 0.2% molar fraction) to scCO2 enhanced the plasticizing effect of the blowing agent mixture. As a direct consequence, at an operating temperature of 35 °C, PLA foams could be manufactured with homogeneous morphology, density as low as 0.09 ± 0.01 g cm?3, mean pore sizes up to 519.0 ± 205.0 µm and pore densities in the range 2.0 × 105 to 3.4 × 108 pores cm?3. Conversely, at a temperature of 40 °C, an increase of plasticizer concentration in the blowing agent mixture up to 0.2% promoted the crystallization of the polymer during sorption stage and, consequently, foaming was slightly reduced. © 2013 Society of Chemical Industry  相似文献   

16.
This paper aims at elucidating some important parameters affecting the cellular morphology of poly(styrene-co-acrylonitrile) (SAN)/clay nanocomposite foams prepared with the supercritical CO2 technology. Prior to foaming experiments, the SAN/CO2 system has first been studied. The effect of nanoclay on CO2 sorption/desorption rate into/from SAN is assessed with a gravimetric method. Ideal saturation conditions are then deduced in view of the foaming process. Nanocomposites foaming has first been performed with the one-step foaming process, also called depressurization foaming. Foams with different cellular morphology have been obtained depending on nanoclay dispersion level and foaming conditions. While foaming at low temperature (40 °C) leads to foams with the highest cell density (∼1012-1014 cells/cm3), the foam expansion is restricted (d∼0.7-0.8 g/cm3). This drawback has been overcome with the use of the two-step foaming process, also called solid-state foaming, where foam expansion occurs during sample dipping in a hot oil bath (d∼0.1-0.5 g/cm3). Different foaming parameters have been varied, and some schemes have been drawn to summarize the characteristics of the foams prepared - cell size, cell density, foam density - depending on both the foaming conditions and nanoclay addition. This result thus illustrates the huge flexibility of the supercritical CO2 batch foaming process for tuning the foam cellular morphology.  相似文献   

17.
Polymeric foam with high expansion ratio, well-defined cell structure, and excellent flame retardant properties is essential for broadening its applications. Polyphenylene oxide (PPO) is a kind of cost-effective engineering plastic with excellent flame retardancy, anti-dripping behavior, and good mechanical strength, but suffers from its poor processability. In this study, microcellular PPO composite foams were fabricated by applying a solid-state foaming technology using compressed CO2 as the blowing agent. High-impact polystyrene (HIPS) phase was introduced with the aim to improve the fluidity and foaming ability of PPO composites. It was interesting to find that the 18–48% HIPS loading significantly increased the expansion ratio, that is, 1.8–3.3 versus, 10.8–14.3, and broadened the optimum foaming temperature of PPO composite foams, attributing to the miscible character between PPO and HIPS and excellent foaming ability of HIPS. Furthermore, the as-prepared PPO/HIPS composite foams exhibited high limited oxygen index (LOI) of 22.0–29.9%, low horizontal flammability rate (HFR) of 60.5–141.2 mm/min, and anti-dripping behavior, and the void fraction was verified to be a critical parameter to determine the flame retardant performance of the composite foam. Besides its lightweight and excellent flame retardant properties, PPO composite foams also presented uncompromised tensile properties and well-defined thermal insulation properties.  相似文献   

18.
Electrically conductive polycarbonate (PC) foams containing a low concentration of graphene nanoplatelets (0.5 wt.%) were produced with variable range of expansion ratio by applying a high-pressure batch foaming process using sc-CO2. The structure of the foams was assessed by means of SEM, AFM and WAXS, and the electrical conductivity was measured in the foam growing direction. Results showed that electrical conductivity of PC composite foams remarkably increased when compared to that of non-foamed PC composite, with both the electrical conductivity and the main cell size of the foams being directly affected by the resultant expansion ratio of the foam. This interesting result could be explained by the development of an interconnected graphene nanoparticle network composed by increasingly well-dispersed and reoriented graphene nanoplatelets, which was developed into the solid fraction of the foam upon foaming by sudden depressurising of the plasticised CO2-saturated PC preform. Some evidences of morphological changes in the graphene nanoplatelets after foaming were obtained by analysing variations in graphene’s (0?0?2) diffraction plane, whose intensity decreased with foaming. A reduction of the average number of layers in the graphene nanoplatelets was also measured, both evidences indicating that improved dispersion of graphene nanoparticles existed in the PC composite foams. As a result, foams with a proper combination of low density and enhanced electrical conductivity could be produced, enabling them to be used in applications such as electromagnetic interference shielding.  相似文献   

19.
Foams of poly(lactic acid) (PLA)/octa(epoxycyclohexyl) polyhedral oligomeric silsesquioxanes (ePOSS) composite were prepared by melt‐mixing and solid‐state foaming methods. A systematic and accurate method was applied to evaluate the effects of epoxy‐based POSS on the structure of dispersion, thermal behavior, and rheological properties of PLA composites. The application of secondary electron–electron back‐scattered diffraction technique was used to observe the cellular micromorphology and micro‐phase dispersion in composite foams, simultaneously. The results indicated that secondary dispersion of POSS aggregates occurred in foaming process. The enhanced melt elasticity, dispersity of POSS, and crystallization morphology of PLA/POSS composite had a significant effect on the controlling foaming behavior. Thus, a homogeneous and finer cellular morphology of PLA/POSS composite foam with high expansion ratio was obtained with a proper content of POSS in the composites. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46399.  相似文献   

20.
An integrated process of melt polycondensation modification and foaming of poly(ethylene terephthalate) (PET) was performed in a high pressure vessel assisted by supercritical carbon dioxide (scCO2). ScCO2 was firstly employed to sweep PET melt, i.e., high pressure CO2 continuously flows through the vessel at a fixed flow rate to remove small molecules for higher molecular weight PET, then this modified PET melt was directly foamed through a rapid depressurization process using scCO2 as blowing agent. In this integrated process, PET with high melt strength after polycondensation modification could be foamed directly in molten state. Therefore, re-molten process of solid modified PET pellets was canceled to avoid its degradation and CO2 saturation time could be saved in foaming process, thus processing time could be shortened and energy efficiency could be improved. The influences of scCO2 sweeping treatment time, pressure and flow rate on properties of the modified PETs and cell morphologies of the foamed PETs were investigated respectively. The results showed that CO2 sweeping treatment could effectively enhance PET melt polycondensation modification process, which was superior to that of N2 treatment. PET foams with average cell diameter of 32–62 μm and cell density of 1 × 107 to 4 × 107 cells/cm3 have been obtained in the integrated process. Compared with the process of only foaming modified PET by scCO2 or performing scCO2 assisted modified PET further melt polycondensation process and scCO2 foaming process separately, this integrated process produced better cell morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号