共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
多机器人动态编队的强化学习算法研究 总被引:8,自引:0,他引:8
在人工智能领域中,强化学习理论由于其自学习性和自适应性的优点而得到了广泛关注.随着分布式人工智能中多智能体理论的不断发展,分布式强化学习算法逐渐成为研究的重点.首先介绍了强化学习的研究状况,然后以多机器人动态编队为研究模型,阐述应用分布式强化学习实现多机器人行为控制的方法.应用SOM神经网络对状态空间进行自主划分,以加快学习速度;应用BP神经网络实现强化学习,以增强系统的泛化能力;并且采用内、外两个强化信号兼顾机器人的个体利益及整体利益.为了明确控制任务,系统使用黑板通信方式进行分层控制.最后由仿真实验证明该方法的有效性. 相似文献
3.
源于分布式人工智能的多智能体系统,以其突出的灵活性和适用性,被应用于多机器人协调系统领域。论文从多智能体理论出发,研究在真实世界里利用多协议全双工的通讯机制如何来实现多智能体机器人系统的技术和方法,并通过编队试验对系统性能进行验证。结果表明系统的构建是稳定可行的。 相似文献
4.
5.
6.
7.
8.
9.
针对多机器人探测和处理多目标的控制任务,模仿人类探索未知环境的过程,提出了多机器人探测的边界、编队、目标吸引、重复探测、路径状况和探测扩张等6个类人探测规则.根据多机器人相互协调和高效探测的需要,通过规则的对应适值控制机器人的运动,使各个机器人沿优化路径共同完成多目标探测任务,解决了在全局未知环境下的多机器人路径规划问题.仿真结果表明,所提出的类人探测各种规则能有效地控制多机器人实现未知环境探测,具有可行性. 相似文献
10.
分布自主协作式的多机器人系统研究 总被引:3,自引:1,他引:3
本文作者在研究多机器人协调的基础上,将多机器人作为一个整体,从系统 角度研究多机器人系统的整体行为和组织结构,以人工智能的多自主体系统为理论基础,以网络通讯和分布数据库为技术基础,设计了多机器人分布自主协作系统的体系结构,提出了实现该系统需要研究的内容和解决的关键技术,介绍了我们在这方面的工作。 相似文献
11.
12.
13.
Previous studies of team formation in multi-agent systems have typically assumed that the agent social network underlying the agent organization is either not explicitly described or the social network is assumed to take on some regular structure such as a fully connected network or a hierarchy. However, recent studies have shown that real-world networks have a rich and purposeful structure, with common properties being observed in many different types of networks. As multi-agent systems continue to grow in size and complexity, the network structure of such systems will become increasing important for designing efficient, effective agent communities.
We present a simple agent-based computational model of team formation, and analyze the theoretical performance of team formation in two simple classes of networks (ring and star topologies). We then give empirical results for team formation in more complex networks under a variety of conditions. From these experiments, we conclude that a key factor in effective team formation is the underlying agent interaction topology that determines the direct interconnections among agents. Specifically, we identify the property of diversity support as a key factor in the effectiveness of network structures for team formation. Scale-free networks, which were developed as a way to model real-world networks, exhibit short average path lengths and hub-like structures. We show that these properties, in turn, result in higher diversity support; as a result, scale-free networks yield higher organizational efficiency than the other classes of networks we have studied. 相似文献
We present a simple agent-based computational model of team formation, and analyze the theoretical performance of team formation in two simple classes of networks (ring and star topologies). We then give empirical results for team formation in more complex networks under a variety of conditions. From these experiments, we conclude that a key factor in effective team formation is the underlying agent interaction topology that determines the direct interconnections among agents. Specifically, we identify the property of diversity support as a key factor in the effectiveness of network structures for team formation. Scale-free networks, which were developed as a way to model real-world networks, exhibit short average path lengths and hub-like structures. We show that these properties, in turn, result in higher diversity support; as a result, scale-free networks yield higher organizational efficiency than the other classes of networks we have studied. 相似文献
14.
15.
16.
协作多机器人系统的模块化设计与实现 总被引:4,自引:1,他引:4
本文从讨论基于分布式人工智能(DAI)中多智能体系统(MAS)理论的多机器人的合
作策略入手,先提出了适用于多机器人合作机制的系统控制结构,再针对具体任务背景,对
多机器人系统的结构和功能进行了模块化分解,设计了系统原型.最后简要地介绍一下利用
面向对象技术完成的仿真系统程序实现. 相似文献
17.
A cooperative auction system (CAS) is proposed to solve the large-scale multi-robot patrol planning problem. Each robot picks its own patrol points via the cooperative auction system and the system continuously re-auctions, based on the team work performance. The proposed method not only works in static environments but also considers variable path planning when the number of mobile robots increases or decreases during patrol. From the results of the simulation, the proposed approach demonstrates decreased time complexity, a lower routing path cost, improved balance of workload among robots, and the potential to scale to a large number of robots and is adaptive to environmental perturbations when the number of robots changes during patrol. 相似文献
18.
19.
一种多移动机器人避碰规划方法 总被引:12,自引:1,他引:11
本文采用集中预规划方法,通过调整机器人的运动速度实现多机器人避碰,所提算
法的基本思想为:将机器人的运动路径分段,然后按避碰要求对机器人通过各段的时间进行
约束,从而将避碰问题转化为高维线性空间的优化问题,并进一步将其转化为线性方程的求
解,使问题具有明确的解析解.由于该方法的复杂度较高,在实现过程中采用了多种方法降
低复杂度,简化计算.本文给出了该算法的基本思路,有关定理及证明,算法的化简方法,
最后给出了实验结果及分析. 相似文献