首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
在[1]中第170页指出,对于变分方法导出的一类高度非线性的守恒型网格生成方程,采用通常的Picard迭代方法无法正确求解.本文构造了一种新的Picard迭代求解方法,数值结果表明这一方法较好地解决了此类方程的求解问题.  相似文献   

2.
Cahn-Hilliard(CH)方程是相场模型中的一个基本的非线性方程,通常使用数值方法进行分析。在对CH方程进行数值离散后会得到一个非线性的方程组,全逼近格式(Full Approximation Storage, FAS)是求解这类非线性方程组的一个高效多重网格迭代格式。目前众多的求解CH方程主要关注数值格式的收敛性,而没有论证求解器的可靠性。文中给出了求解CH方程离散得到的非线性方程组的多重网格算法的收敛性证明,从理论上保证了计算过程的可靠性。针对CH方程的时间二阶全离散差分数值格式,利用快速子空间下降(Fast Subspace Descent, FASD)框架给出其FAS格式多重网格求解器的收敛常数估计。为了完成这一目标,首先将原本的差分问题转化为完全等价的有限元问题,再论证有限元问题来自一个凸泛函能量形式的极小化,然后验证能量形式及空间分解满足FASD框架假设,最终得到原多重网格算法的收敛系数估计。结果显示,在非线性情形下,CH方程中的参数ε对网格尺度添加了限制,太小的参数会导致数值计算过程不收敛。最后通过数值实验验证了收敛系数与方程参数及网格尺度的依赖关系。  相似文献   

3.
基于SIMPLE算法求解Navier-Stokes方程   总被引:1,自引:0,他引:1  
介绍求解Navier-Stokes的数值解法,针对不可压缩流体的的数值解法有涡量-流函数方法和SIMPLE方法,对基于同位网格的SIMPLE算法作详细讨论,给出该算法的推导过程,最终得出求解SIMPLE算法的求解步骤,应用该求解步骤对具体实例求解,得出结论。  相似文献   

4.
多重网格方法求解两类Helmholtz方程   总被引:1,自引:0,他引:1  
详细给出了多重网格方法的实现过程,借助正定Helmholtz方程及不定Helmholtz方程的求解来探讨多重网格方法的特性。对多重网格V环、W环以及F环三种不同迭代格式的收敛效果进行了对比。通过正定Helmholtz方程的求解,发现多重网格的确有很高的计算效率。对于不定Helmholtz方程,随着波数的增加,利用多重网格方法得到结果不收敛,原因出在细网格光滑和粗网格矫正过程。如何针对此问题对多重网格进行有效改进还有待进一步研究。  相似文献   

5.
采用B3LYP/6-310*方法,对1-吡啶-3-[4-(苯基偶氮)苯基]-三氮烯(PYPAPT)各异构体进行优化,同时用ab initio HF单激发组态相互作用(CIS)法在6-31G*基组上优化各异构体最低激发单重态几何结构,并探讨了其分子结构与能量的关系,计算结果表明:(1)所有基态异构体基本保持Cs对称性,各原子基本处在同一平面中,而激发态各异构体分子的共轭性不如基态分子,在激发态分子中与偶氮相连的另一苯环与三氮烯及与其相连的苯和吡啶环都不在一个平面;(2)无论在气相中还是在二氯甲烷(DCM,ε=8.93),乙醇(EtOH,ε=24.55)和乙腈(ACN,ε=36.64)溶剂中,基态时PYPAPT主要以M11存在,激发态时为J11较稳定。运用含时密度泛函理论(TD-DFT)计算了PYPAPT基态和激发态各异构体在溶剂中的吸收与发射光谱,研究了溶剂模型对理论光谱的影响。计算结果表明,PYPAPT各异构体基态和激发态的HOMO和LUMO都是离域π键,随着溶剂极性的增强,HOMO和LUMO轨道能量都逐渐下降。理论电子光谱证实,PYPAPT各异构体的吸收光谱随溶剂极性的增强略微红移,吸收强度也有微弱升高;最...  相似文献   

6.
介绍求解Navier-Stokes65数值解法。针对不可压缩流体的的数值解法有涡量一流函数方法@SIMPLE57法.对基于同位网格的65SIMPLE法作详细讨论,给出该算法的推导过程,最终得出求解SIMPLE算法的求解步骤。应用该求解步骤对具体实例求解,得出结论。  相似文献   

7.
针对传统串行迭代法求解大波数Helmholtz方程存在效率低下且受限于单机内存的问题,提出了一种基于消息传递接口(Message Passing Interface,MPI) 的并行预条件迭代法。该算法利用复移位拉普拉斯算子对Helmholtz方程进行预条件处理,联合稳定双共轭梯度法和基于矩阵的多重网格法来求解预条件方程离散后的大规模线性系统,在Linux集群系统上基于 MPI环境实现了求解算法的并行计算,重点解决了多重网格的并行划分、信息传递和多重网格组件的构建问题。数值实验表明,对于大波数问题,提出的算法具有良好的并行加速比,相较于串行算法极大地提高了计算效率。  相似文献   

8.
本文结合区域分裂技术、多重网格方法、加速Schwarz收敛方法、高低解方法、非线性Jacobi迭代方法和Newton线性化迭代方法,设计了三种求解半线性椭圆型方程(组)的并行算法:并行Newton多重网格算法、并行非线性多重网格算法和并行加速Schwarz收敛算法。数值试验说明这三种算法的并行计算是可行的。  相似文献   

9.
用演化算法求解抛物型方程扩散系数的识别问题   总被引:3,自引:1,他引:3  
基于演化算法给出了一类求解参数识别反问题的一般方法,该方法表明只要找到好的、求解相应的正问题的数值方法,演化算法就可以用于求解此类反问题。设计有效的求解反问题的演化算法的关键是寻找一种适合反问题的解空间的编码表示形式、适当的适应值函数形式以及有效的计算正问题的数值方法。该文结合算法、传统的求解反问题的工方法和正则化技术,设计了一类求解参数识别反问题的方法。为验证此类方法,将其用于求解一维扩散方程的  相似文献   

10.
将Chebyshev谱方法与Euler方法相结合,对一类非线性Burgers方程进行数值求解,通过数值模拟将其与有限差分法和粒子无网格线混合格式MPS-MAFL方法进行了比较,结果表明这种方法对于求解非线性Burgers方程具有较好的效果.  相似文献   

11.
A multigrid algorithm for the solution of a finite element stabilized discretization of compressible fluid dynamics equations on unstructured grids is described. The solution of the stationary problems is sought by time-stepping and a linearization of the nonlinear discrete systems leads to a very large system of linear equations. These systems are ill-conditioned and require efficient computational procedures. The numerical experiments for Navier-Stokes and Euler systems are presented. The method can be easily included in a parallel library as a preconditioner.  相似文献   

12.
S. Shu  D. Sun  J. Xu 《Computing》2006,77(4):347-377
In this paper, we will design and analyze a class of new algebraic multigrid methods for algebraic systems arising from the discretization of second order elliptic boundary value problems by high-order finite element methods. For a given sparse stiffness matrix from a quadratic or cubic Lagrangian finite element discretization, an algebraic approach is carefully designed to recover the stiffness matrix associated with the linear finite element disretization on the same underlying (but nevertheless unknown to the user) finite element grid. With any given classical algebraic multigrid solver for linear finite element stiffness matrix, a corresponding algebraic multigrid method can then be designed for the quadratic or higher order finite element stiffness matrix by combining with a standard smoother for the original system. This method is designed under the assumption that the sparse matrix to be solved is associated with a specific higher order, quadratic for example, finite element discretization on a finite element grid but the geometric data for the underlying grid is unknown. The resulting new algebraic multigrid method is shown, by numerical experiments, to be much more efficient than the classical algebraic multigrid method which is directly applied to the high-order finite element matrix. Some theoretical analysis is also provided for the convergence of the new method.  相似文献   

13.
We propose a cascadic multigrid algorithm for a semilinear indefinite elliptic problem. We use a standard finite element discretization with piecewise linear finite elements. The arising nonlinear equations are solved by a cascadic organization of Newton's method with frozen derivative on a sequence of nested grids. This gives a simple version of a multigrid method without projections on coarser grids. The cascadic multigrid algorithm starts on a comparatively coarse grid where the number of unknowns is small enough to obtain an approximate solution within sufficiently high precision without substantial computational effort. On each finer grid we perform exactly one Newton step taking the approximate solution from the coarsest grid as initial guess. The linear Newton systems are solved iteratively by a Jacobi-type iteration with special parameters using the approximate solution from the previous grid as initial guess. We prove that for a sufficiently fine initial grid and for a sufficiently good start approximation the algorithm yields an approximate solution within the discretization error on the finest grid and that the method has multigrid complexity with logarithmic multiplier. Received February 1999, revised July 13, 1999  相似文献   

14.
A new approach to nonlinear state estimation and object tracking from indirect observations of a continuous time process is examined. Stochastic differential equations (SDEs) are employed to model the dynamics of the unobservable state. Tracking problems in the plane subject to boundaries on the state-space do not in general provide analytical solutions. A widely used numerical approach is the sequential Monte Carlo (SMC) method which relies on stochastic simulations to approximate state densities. For off-line analysis, however, accurate smoothed state density and parameter estimation can become complicated using SMC because Monte Carlo randomness is introduced. The finite element (FE) method solves the Kolmogorov equations of the SDE numerically on a triangular unstructured mesh for which boundary conditions to the state-space are simple to incorporate. The FE approach to nonlinear state estimation is suited for off-line data analysis because the computed smoothed state densities, maximum a posteriori parameter estimates and state sequence are deterministic conditional on the finite element mesh and the observations. The proposed method is conceptually similar to existing point-mass filtering methods, but is computationally more advanced and generally applicable. The performance of the FE estimators in relation to SMC and to the resolution of the spatial discretization is examined empirically through simulation. A real-data case study involving fish tracking is also analysed.  相似文献   

15.
We present a method that has been developed for the efficient numerical simulation of two-phase incompressible flows. For capturing the interface between the phases the level set technique is applied. The continuous model consists of the incompressible Navier–Stokes equations coupled with an advection equation for the level set function. The effect of surface tension is modeled by a localized force term at the interface (so-called continuum surface force approach). For spatial discretization of velocity, pressure and the level set function conforming finite elements on a hierarchy of nested tetrahedral grids are used. In the finite element setting we can apply a special technique to the localized force term, which is based on a partial integration rule for the Laplace–Beltrami operator. Due to this approach the second order derivatives coming from the curvature can be eliminated. For the time discretization we apply a variant of the fractional step θ-scheme. The discrete saddle point problems that occur in each time step are solved using an inexact Uzawa method combined with multigrid techniques. For reparametrization of the level set function a new variant of the fast marching method is introduced. A special feature of the solver is that it combines the level set method with finite element discretization, Laplace–Beltrami partial integration, multilevel local refinement and multigrid solution techniques. All these components of the solver are described. Results of numerical experiments are presented.  相似文献   

16.

A Waveform Relaxation method as applied to a linear system of ODEs is the Picard iteration for a linear Volterra integral equation of the second kind ({\cal I} - {\cal K})y = b \eqno (1) called Waveform Relaxation second kind equation. A corresponding Waveform Relaxation Runge-Kutta method is the Picard iteration for a discretized version ({\cal I} - {\cal K}_l )y_l = b_l \eqno (2) of the integral equation (1), where y l is the continuous solution of the original linear system of ODE provided by the so called limit method. We consider a W-cycle multigrid method, with Picard iteration as smoothing step, for iteratively computing y l . This multigrid method belongs to the class of multigrid methods of the second kind as described in Hackbusch [3, chapter 16]. In the paper we prove that the truncation error after one iteration is of the same order of the discretization error y l @ y of the limit method and the truncation error after two iterations has order larger than the discretization error. Thus we can see the multigrid method as a new numerical method for solving the original linear system of ODE which provides, after one iteration, a continuous solution of the same order of the solution of the limit method, and after two iterations, a solution with asymptotically the same error of the solution of the limit method. On the other hand the computational cost of the multigrid method is considerably smaller than the limit method.  相似文献   

17.
ABSTRACT

In this paper, an adaptive numerical method is proposed for solving a 2D Schrödinger equation with an imaginary time propagation approach. The differential equation is first transferred via a Wick rotation to a real time-dependent equation, whose solution corresponds to the ground state of a given system when time approaches infinity. The temporal equation is then discretized spatially via a finite element method, and temporally utilizing a Crank–Nicolson scheme. A moving mesh strategy based on harmonic maps is considered to eliminate possible singular behaviour of the solution. Several linear and nonlinear examples are tested by using our method. The experiments demonstrate clearly that our method provides an effective way to locate the ground state of the equations through underlying eigenvalue problems.  相似文献   

18.
This paper presents and analyzes a parareal-in-time scheme for the incompressible non-isothermal Navier–Stokes equations with Boussinesq approximation. Standard finite element method is adopted for the spatial discretization.The proposed algorithm is proved to be unconditional stability. The convergence factor of iteration error for the velocity and temperature is given at time-continuous case. It theoretically demonstrates the superlinearly convergence of the parareal iteration combined with finite element method for incompressible non-isothermal flows. Finally, several numerical experiments that confirm feasibility and applicability of the algorithm perform well as expected.  相似文献   

19.
We develop a numerical model for large eddy simulation of turbulent heat transport in the Strait of Gibraltar. The flow equations are the incompressible Navier–Stokes equations including Coriolis forces and density variation through the Boussinesq approximation. The turbulence effects are incorporated in the system by considering the Smagorinsky model. As a numerical solver we propose a finite element semi-Lagrangian method. The solution procedure consists of combining a non-oscillatory semi-Lagrangian scheme for time discretization with the finite element method for space discretization. Numerical results illustrate a buoyancy-driven circulations along the Strait of Gibraltar and the sea-surface temperature is flushed out and move to northeast coast. The Ocean discharge and the temperature difference are shown to control the plume structure.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号