首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the sol–gel method was employed to prepare zinc oxide (ZnO) thin films as cathode buffer layers for inverted organic solar cells (IOSCs). We used a low temperature sol-gel process for the synthesis of ZnO thin films, in which the molar ratio of zinc acetate dihydrate (ZAD) to ethanolamine (MEA) was varied; subsequently, using the thin films, we successfully fabricated inverted solar cells on flexible plastic substrates. A ZnO sol–gel was first prepared by dissolving ZAD and MEA in ethylene glycol monomethyl ether (EGME). The molar ratios of ZAD to MEA were set as 1:1.2, 1:1, and 1:0.8, and we investigated the characteristics of the resulting ZnO thin films. We investigated the optical transmittance, surface roughness, and surface morphology of the films. Then, we discussed the reasons about the improvement of the device efficiency. The devices were fabricated using the ZnO thin films as cathode buffer layers. The results indicated that the morphology of the thin films prepared using the ZAD to MEA ratios of 1:1 and 1:0.8 changed to a rippled nanostructure after two-step annealing. The PCE was enhanced because of the higher light absorption in the active layer caused by the nanostructure. The structure of the inverted device was ITO/ZnO/P3HT:PC61BM/MoO3/Ag. The short-circuit current densities (8.59 mA/cm2 and 8.34 mA/cm2) of the devices with films prepared using the ZAD to MEA ratios of 1:1 and 1:0.8 ratios, respectively, and annealed at 125 °C were higher than that of the device containing the ZnO thin film that was annealed at 150 °C. Inverted solar cells with ZnO films that were prepared using the ZAD to MEA ratios of 1:1 and 1:0.8 and annealed at 125 °C exhibited PCEs of 3.38% and 3.30%, respectively. More than that, PCEs of the flexible device can reach up to 1.53%.  相似文献   

2.
Nanocomposite buffer layer based on metal oxide and polymer is merging as a novel buffer layer for organic solar cells, which combines the high charge carrier mobility of metal oxide and good film formation properties of polymer. In this work, a nanocomposite of zinc oxide and a commercialized available polyethylenimine (PEI) was developed and used as the cathode buffer layer (CBL) for the inverted organic solar cells and p-i-n heterojunction perovskite solar cells. The cooperation of PEI in nano ZnO offers a good film forming ability of the composite material, which is an advantage in device fabrication. In addition, power conversion efficiency (PCE) of the ZnO:PEI CBL based device was also improved when compared to that of ZnO-only and PEI-only devices. The highest PCE of P3HT:PC61BM and PTB7-Th:PC61BM devices reached to 3.57% and 8.16%, respectively. More importantly, there is no obvious device performance loss with the increase of the layer thickness of ZnO:PEI CBL to 60 nm in organic solar cells, which is in contrast to the PEI based devices, whose device performance decreases dramatically when the PEI layer thickness is higher than 6 nm. Such a nano composite material is also applicable in inverted heterojunction perovskite solar cells. A PCE of 11.76% was achieved for the perovskite solar cell with a thick ZnO:PEI CBL (150 nm) CBL, which is around 1.71% higher than that of the reference cell without CBL, or with ZnO CBL. In addition, stability of the organic and perovskite solar cells having ZnO:PEI CBL was also found to be improved in comparison with that of PEI based device.  相似文献   

3.
《Organic Electronics》2014,15(5):1035-1042
We report the development and application of high-quality zinc oxide nanoparticles (ZnO NPs) processed in air for stable inverted bulk heterojunction solar cells as an electron extraction layer (EEL). The ZnO NPs (average size ∼11 nm) were dispersed in chloroform and stabilized by propylamine (PA). We demonstrated that the ZnO NP dispersion with 4 vol.% of PA as stabilizer can be used in air directly and remains clear up to one month after preparation. Our inverted solar cells consisted of a blade-coated poly(N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole (PCDTBT) and [6,6]-phenyl C71-butyric acid methyl ester (PC71BM) (1: 4 by weight) active layer sandwiched between a ZnO electron extraction layer and a MoO3/Ag anode. All solar cells with ZnO films fabricated in air using PA-stabilized ZnO dispersions prepared within a time window of one month exhibited power conversion efficiencies (PCE) above 4%. In contrast, if the ZnO film was prepared in air using regular un-stabilized ZnO NP dispersion, the PCE would drop to 0.2% due to poor film quality. More interestingly, X-ray photoelectron spectroscopy and nuclear magnetic resonance measurements indicated that the PA ligands were not covalently bonded to ZnO NPs and did not exist in the deposited ZnO films. The spin-cast ZnO thin films (without any thermal treatment) are insoluble in organic solvents and can be directly used as an EEL in solar cells. This feature is beneficial for fabricating organic solar cells on flexible polymer substrates. More importantly, our non-encapsulated inverted solar cells are highly stable with their PCEs remaining unchanged after being stored in air for 50 days.  相似文献   

4.
In order to get the maximum output from oxide-semiconductor/base-semiconductor solar cell, one has to incorporate an ultrathin insulating layer so that the resulting configuration is a semiconductor-insulator-semiconductor (SIS) diode. The performance of such SIS diodes is equivalent to a metal-insulator-semiconductor (MIS) solar cell. The key parameters in the optimization are the thickness of the insulating layer and the work function of the oxide semiconductor. Using the existing knowledge of the parameters for a number of oxide semiconductors one would conclude that ITO, ZnO, and SnO2are good oxides for the fabrication of SIS solar cells. Some properties of highly conducting and highly transparent ZnO films which have been fabricated in our laboratory are presented. These results suggest that these ZnO films should be useful for fabricating low-cost SIS solar cells.  相似文献   

5.
We propose a self-assembly method for forming large-area high-quality solution-processed titanium oxide (TiO2) films as efficient electron transport layer for organic solar cells. The self-assembled solution-processed TiO2 layers are highly ordered and significantly improved in surface morphology over commonly-used spin-coating process resulting in better charge collection and significant material saving. When incorporated into polymer solar cells, the TiO2 device shows enhanced performance. Furthermore, we demonstrate the TiO2 can form large-area films, and achieve very uniform and improved device performances. Consequently, the self-assembled TiO2 films can be efficient and low-cost electron transport layer potentially for large-area organic optoelectronics.  相似文献   

6.
We report a unique nano-ridge structure of zinc oxide (ZnO) and its application in high performance inverted polymer solar cells. The ZnO nano-ridge structure was formed by a sol–gel process using a ramp annealing method. As the solvent slowly evaporated due to the low heating rate, there was sufficient time for the gel particles to structurally relax and pile up, resulting in a dense and undulated film. Nano-ridges with peak as high as 120 nm and valley to valley distance of about 500 nm were formed. This film provided an effective hole blocking layer and also an increased interfacial area for electron collection. An inverted bulk heterojunction polymer solar cell was fabricated using the ZnO nano-ridge film as the electron collecting layer. The device showed a high power conversion efficiency of 4.00%, an improvement of about 25% over similar solar cells made with a planar film of ZnO nanoparticles.  相似文献   

7.
The influences of morphology and thickness of zinc oxide (ZnO) buffer layers on the performance of inverted polymer solar cells are investigated. ZnO buffer layers with different morphology and thickness varying from several nanometers to ≈55 nm are fabricated by adjusting the concentration of the precursor sol. The ZnO buffer layers with nearly same surface quality but with thickness varying from ≈7 to ≈65 nm are also fabricated by spinning coating for comparison. The photovoltaic performance is found to be strongly dependent on ZnO surface quality and less dependent on the thickness. The use of dense and homogenous ZnO buffer layers enhances the fill factor and short‐circuit current of inverted solar cell without sacrificing the open‐circuit voltage of device due to an improvement in the contact between the ZnO buffer layer and the photoactive layer. Inverted devices with a dense and homogenous ZnO buffer layer derived from 0.1 M sol exhibit an overall conversion efficiency of 3.3% which is a 32% increase compared to devices with a rough ZnO buffer layer made from 1 M sol, which exhibited a power conversion efficiency of 2.5%. The results indicate that the efficiency of inverted polymer solar cells can be significantly influenced by the morphology of the buffer layer.  相似文献   

8.
The recent development of solution-processed perovskite thin films over micrometer-sized textured silicon bottom solar cells enables tandem solar cells with power conversion efficiencies > 30%. Next to improved light harvesting, textured silicon wafers are the industrial standard. To achieve high performance, the open-circuit voltage losses that occur when fabricating perovskite solar cells over such textures need to be mitigated. This study provides a practical guideline to discriminate and address the voltage losses at the interfaces as well as in the bulk of solution-processed double cation perovskite thin films using photoluminescence quantum yield measurements. Furthermore, the origin of these losses is investigated via morphological, microstructural, and compositional analysis and present possible mitigation strategies. The guideline will be beneficial for scientists working on randomly textured surfaces and provides a deeper understanding on this timely research topic.  相似文献   

9.
Blends of nanocrystalline zinc oxide nanoparticles (nc‐ZnO) and regioregular poly(3‐hexylthiophene) (P3HT) processed from solution have been used to construct hybrid polymer–metal oxide bulk‐heterojunction solar cells. Thermal annealing of the spin‐cast films significantly improves the solar‐energy conversion efficiency of these hybrid solar cells to ~ 0.9 %. Photoluminescence and photoinduced absorption spectroscopy demonstrate that charge‐carrier generation is not quantitative, because a fraction of P3HT appears not to be in contact with or in close proximity to ZnO. The coarse morphology of the films, also identified by tapping‐mode atomic force microscopy, likely limits the device performance.  相似文献   

10.
This paper presents a high efficiency (~3.8%) inverted organic photovoltaic devices based on a P3HT:PCBM bulk heterojunction (BHJ) blend with improved electron- and hole-selective contact layers. Zinc oxide (ZnO) nanoparticle films with different thicknesses are deposited on the transparent electrodes as a nano-porous electron-selective contact layer. A thin gold film is used between the BHJ photoactive layer and the poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS), which improves the wettability and significantly enhances the stability of the device (>50 days of air exposure). Photovoltaic device parameters such as power conversion efficiency (PCE) and external quantum efficiency (EQE) are systematically examined for inverted devices with different thicknesses of ZnO and gold layers in comparison to the non-inverted and reference inverted devices with no contact layers. The optimized organic devices with ZnO and Au contact layers show exceptional short circuit currents (in excess of 13 mA/cm2), in comparison to the reference devices, which is related to increased quantum efficiency of the device observed in measured EQE experiments. These results are important for development of high efficiency and stable all-printed organic solar cells and point out the role of contact layers, in particular, ZnO conductivity and morphology in the device performance.  相似文献   

11.
The performance and stability of both inverted and conventional organic photovoltaic devices were examined with low temperature chemically synthesized ZnO nanoparticles as electron transporting layer and MoO3 as hole transporting layer. The device efficiency and energy conversion efficiency in inverted devices were found to be 3.48% and 68%, respectively, whereas, in conventional devices these were 2.86% and 55%, respectively. This change of efficiency in inverted and conventional devices relates with the change of flatband voltage extracted from Mott-Schottky capacitance study. The inverted device shows excellent efficiency even after 250 h in unencapsulated condition. However, the conventional device efficiency degrades very quickly compared with the inverted one. Thus, the films deposition order plays a pivotal role for fabricating a stable and high performance organic photovoltaic device.  相似文献   

12.
The properties of Al-doped ZnO (AZO) play an important role in the photovoltaic performance of inverted polymer solar cells (PSCs), which is used as electron transport and hole blocking buffer layers. In this work, we study the effects of Al-doping level in AZO on device performance in detail. Results indicate that the device performance intensely depends on the Al-doping level. The AZO thin films with Al-doping atomic percentage of 1.0% possess the best conductivity. The resulting solar cells show the enhanced short current density and the fill factor (FF) simultaneously, and the power conversion efficiency (PCE) is improved by 74%, which are attributed to the reduced carrier recombination and the optimized charge transport and extraction between AZO and the active layer.  相似文献   

13.
14.
We demonstrate efficient inverted polymer solar cells (PSCs) based on poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) by using solution-processed titanium(IV) oxide bis(2,4-pentanedionate) (TOPD) as electron collection layer (ECL) between the indium tin oxide (ITO) electrode and photoactive layer. The TOPD buffer layer was prepared by spin-coating isopropanol solution of TOPD on ITO and then baked at 140 °C for 5 min. The power conversion efficiency (PCE) of the inverted PSC with TOPD buffer layer reaches 4% under the illumination of AM1.5G, 100 mW/cm2, which is increased by 76% in comparison with that (2.27%) of the inverted device without TOPD ECL. The results indicate that TOPD is a promising electron collection layer for inverted PSCs.  相似文献   

15.
Zinc oxide (ZnO) has recently shown to be of considerable interest for the development of interfacial buffer layers in inverted organic solar cells (OSCs). High quality ZnO thin films can indeed be prepared on large-area ITO-coated flexible substrates, using low temperature deposition techniques such as sputtering, a compatible technique with roll-to-roll process. However, further studies are still needed for a better understanding of the influence of the flexible substrate properties on the photovoltaic performances of those devices. In this work, ZnO films have been sputtered on ITO-coated flexible (PEN) substrates and annealed at different temperatures. The role of the surface morphology and the crystalline quality of ZnO films has been investigated. In the window of flexible compatible process, we found that moderate annealing temperatures of ZnO (?180 °C) lead to improved structural properties and performances. Interestingly, we achieve optimal performances for an annealing temperature of 160 °C, resulting in power conversion efficiency (PCE) equivalent to the highest performances usually achieved on rigid cells.  相似文献   

16.
Photo-conversion efficiency of inverted polymer solar cells incorporating pulsed laser deposited ZnO electron transport layer have been found to significantly increase from 0.8% to up to 3.3% as the film thickness increased from 4 nm to 100 nm. While the ZnO film thickness was found to have little influence on the morphology of the resultant ZnO films, the band structure of ZnO was found to evolve only for films of thickness 25 nm or more and this was accompanied by a significant reduction of 0.4 eV in the workfunction. The films became more oxygen deficient with increased thickness, as found from X-ray photoelectron spectroscopy (XPS) and valence band XPS (VBXPS). We attribute the strong dependence of device performance to the zinc to oxygen stoichiometry within the ZnO layers, leading to improvement in the band structure of ZnO with increased thickness.  相似文献   

17.
Thin-films of Zinc Tin Oxide (ZTO) with an extremely high charge carrier mobility and superior optical transmittance are synthesized using a simple solution method. These ZTO films have been systematically studied for the application in inverted polymer solar cells (PSCs). The Hall effects measurements show that the charge mobility of the ZTO semiconductor is over 16.5 cm2.V−1.S−1, which is the highest mobility value ever reported for oxide buffer made by using solution process. By applying the ZTO buffer layer in the inverted PSCs of P3HT:PC61BM, the power conversion efficiency of the device is 30% higher than that of the devices made with other common buffer layers such as ZnO and TiO2. Light intensity-dependent JV studies and PL measurements also indicate that ZTO buffer layer reduces surface recombination. This work demonstrates that the solution-synthesized ZTO is a promising new buffer layer with superior electron extraction capability for the solar cells.  相似文献   

18.
High performance indium tin oxide (ITO)‐free small molecule organic solar cells and organic light‐emitting diodes (OLEDs) are demonstrated using optimized ZnO electrodes with alternative non‐metallic co‐dopants. The co‐doping of hydrogen and fluorine reduces the metal content of ZnO thin films, resulting in a low absorption coefficient, a high transmittance, and a low refractive index as well as the high conductivity, which are needed for the application in organic solar cells and OLEDs. While the established metal‐doped ZnO films have good electrical and optical properties, their application in organic devices is not as efficient as other alternative electrode approaches. The optimized ZnO electrodes presented here are employed in organic solar cells as well as OLEDs and allow not only the replacement of ITO, but also significantly improve the efficiency compared to lab‐standard ITO. The enhanced performance is attributed to outstanding optical properties and spontaneously nanostructured surfaces of the ZnO films with non‐metallic co‐dopants and their straightforward integration with molecular doping technology, which avoids several common drawbacks of ZnO electrodes. The observations show that optimized ZnO films with non‐metallic co‐dopants are a promising and competitive electrode for low‐cost and high performance organic solar cells and OLEDs.  相似文献   

19.
We report high photovoltaic efficiency of over 9% in solution-processed, small-molecule (SPSM) 7,7′-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b′]dithiophene-2,6-diyl)bis(6-fluoro-4(5′-hexyl-[2,2′-bithiophen]-5-yl)benzo[c]1,2,5]thiadiazole) p-DTS(FBTTh2)2:[6-6]-phenyl C70 butyric acid methyl ester (PC70BM) blend based inverted BHJ solar cell by incorporating luminescent zinc oxide doped with sodium (ZnO:Na) quantum dots (QD) (l-ZnO) as a cathode buffer layer (CBL) in inverted bulk-heterojunction (BHJ) solar cells for the first time. The l-ZnO absorbs ultraviolet (UV) light and down-converts it to visible light. The l-ZnO layer's emission overlaps significantly with the absorption of p-DTS(FBTTh2)2, leading to an enhanced absorption by p-DTS(FBTTh2)2. This resulted in a significant enhancement of photo-current from 15.4 to 17.27 mA/cm2 and efficiency from 8% to 9.2% for ZnO and l-ZnO based devices, respectively. This is among one of the highest efficiency values reported so far in the case of SPSM based single junction BHJ solar cells. The luminescent ZnO layer also protects the active layer from UV-induced degradation as solar cells show high stability under constant solar light illumination retaining more than 90% (∼28 h) of its initial efficiency, whereas BHJ solar cells without the luminescent ZnO layer degraded to ∼50% of its initial value under same conditions. Since ZnO is an essential part of inverted organic solar cells, the luminescent l-ZnO CBL has great potential in inverted organic solar cells.  相似文献   

20.
In this work, we propose a facile microwave-assisted approach for annealing sol-gel derived ZnO films to serve as electron transport layers (ETLs) for inverted bulk heterojunction polymer solar cells. We have demonstrated an impressive enhancement in performance for devices based on a poly (3-hexylthiophene) (P3HT): (6,6)-phenyl-C61-butyric acid methyl ester (PC61BM) system employing the microwave-annealed ZnO (ZnO (MW)) ETLs in comparison to the cases using the conventional hotplate-annealed ZnO (ZnO (HP)) ones. The better electron transport in the device with the ZnO (MW) ETL is mainly ascribed to the preferable interfacial contact as evidenced by the morphology characteristics. Furthermore, the comprehensive analyses conducted from the light intensity dependent photocurrent and photovoltage measurements, the capacitance-voltage characteristics, and the alternating current impedance spectra suggest that the utilization of the ZnO (MW) ETLs can effectively suppress trap-assisted recombination as well as charge accumulation at the interface between P3HT: PC61BM layers and ZnO layers, which is responsible for the enhanced device performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号