首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated optical, electrical and mechanical properties of indium tin oxide (ITO) on flexible polyethylene terephthalate (PET) substrate, considering bulk-heterojunction (BHJ) polymer solar cells applications. Encapsulation of flexible solar cells with the architecture PET/ITO/PEDOT:PSS/P3HT:PCBM (or P3HT:PCBM:AZ-NDI-4)/Al was done by direct brush-painting with nail enamel. Active cell layer blends of [6,6]-phenyl C61 butyric acid methyl ester (PCBM) with regioregular or regiorandom poly(3-hexylthiophene-2,5-diyl) (P3HT) were applied. Additionally for this role the mixture of regioregular P3HT:PCBM with naphthalene diimide–imine with four thiophene rings AZ-NDI-4 was tested. Obtained photovoltaic (PV) and optical (UV–vis) results of the flexible polymer solar cells were compared with the same architecture of devices on the glass/ITO substrate.  相似文献   

2.
The main goal of the paper was investigation of influence of aluminum electrode preparation via thermal evaporation (TE) and the magnetron sputtering (MS) on power conversion efficiency (PCE) of polymeric solar cells. The photovoltaic properties of such three kinds devices based on poly(3-hexylthiophene-2,5-diyl) (P3HT) as ITO/P3HT/Al, ITO/P3HT:PCBM (1:1, w/w)/Al and ITO/PEDOT:PSS/P3HT:PCBM (1:1, w/w)/Al were investigated. For the constructed devices impedance spectroscopy were analyzed. For devices lack of PEDOT:PSS layer or lack of PCBM, photovoltaic parameters were very low and similar to the parameters obtained for device with Al electrode prepared by magnetron sputtering. The devices comprising PEDOT:PSS with P3HT:PCBM showed the best photovoltaic parameters such as a VOC of 0.60 V, JSC of 4.61 mA/cm2, FF of 0.21, and PCE of 5.7 × 10?1%.  相似文献   

3.
A series of [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM)‐like fullerene derivatives with the butyl chain in PCBM changing from 3 to 7 carbon atoms, respectively (F1–F5), are designed and synthesized to investigate the relationship between photovoltaic properties and the molecular structure of fullerene derivative acceptors. F2 with a butyl chain is PCBM itself for comparison. Electrochemical, optical, electron mobility, morphology, and photovoltaic properties of the molecules are characterized, and the effect of the alkyl chain length on their properties is investigated. Although there is little difference in the absorption spectra and LUMO energy levels of F1–F5, an interesting effect of the alkyl chain length on the photovoltaic properties is observed. For the polymer solar cells (PSCs) based on P3HT as donor and F1–F5, respectively, as acceptors, the photovoltaic behavior of the P3HT/F1 and P3HT/F4 systems are similar to or a little better than that of the P3HT/PCBM device with power conversion efficiencies (PCEs) above 3.5%, while the performances of P3HT/F3 and P3HT/F5‐based solar cells are poorer, with PCE values below 3.0%. The phenomenon is explained by the effect of the alkyl chain length on the absorption spectra, fluorescence quenching degree, electron mobility, and morphology of the P3HT/F1–F5 (1:1, w/w) blend films.  相似文献   

4.
We investigated the effect of organic polar solvent on the properties of [6,6]-phenyl-C71-butyric acid methyl ester (PCBM) films and poly(3-hexylthiophene) (P3HT):PCBM blend films employed as active layer in organic photovoltaic. The nanoscale morphology and the electrical characteristics of the P3HT:PCBM film can be controlled through organic polar solvent exposure, which exhibited with a short-circuit current density of 8.64 mA/cm2, an open circuit voltage of 0.63 V, and a power conversion efficiency of 3.29% under AM 1.5 illumination with a light intensity of 100 mW/cm2. By exposing the active layer films to organic polar solvent a favorable phase separation in the P3HT:PCBM films is obtained. The improved power conversion efficiency can be to the high conductivity and high surface area of the P3HT:PCBM layer treated with organic polar solvent.  相似文献   

5.
《Microelectronics Reliability》2014,54(12):2766-2774
In this study, the gold/poly(3-hexylthiophene):[6,6]-phenyl C61 butyric acid methyl ester/n-type silicon (Au/P3HT:PCBM/n-Si) metal–polymer–semiconductor (MPS) Schottky barrier diodes (SBDs) were investigated in terms of the effects of PCBM concentration on the electrical parameters. The forward and reverse bias current–voltage (IV) characteristics of the Au/P3HT:PCBM/n-Si MPS SBDs fabricated by using the different P3HT:PCBM mass ratios were studied in the dark, at room temperature. The main electrical parameters, such as ideality factor (n), barrier height (ΦB0), series resistance (Rs), shunt resistance (Rsh), and density of interface states (Nss) were determined from IV characteristics for the different P3HT:PCBM mass ratios (2:1, 6:1 and 10:1) used diodes. The values of n, Rs, ΦB0, and Nss were reduced, while the carrier mobility and current were increased, by increasing the PCBM concentration in the P3HT:PCBM organic blend layer. The ideal values of electrical parameters were obtained for 2:1 P3HT:PCBM mass ratio used diode. This shows that the electrical properties of MPS diodes strongly depend on the PCBM concentration of the P3HT:PCBM organic layer. Moreover, increasing the PCBM concentration in P3HT:PCBM organic blend layer improves the quality of the Au/P3HT:PCBM/n-Si (MPS) SBDs which enables the fabrication of high-quality electronic and optoelectronic devices.  相似文献   

6.
We demonstrate plasmonic effects in bulk heterojunction organic solar cells (OSCs) consisting of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) by incorporating silver (Ag) triangular shaped nanoparticles (nanoprisms; NPSs) into a poly(3,4-ethylenedioxythiophene) buffer layer. The optical absorption and geometric characteristics of the Ag NPSs were investigated in terms of their tunable in-plane dipole local surface plasmon resonance (LSPR) bands. The photovoltaic characteristics showed that the power conversion efficiency (PCE) of the plasmonic OSCs was enhanced by an increase of short circuit current (Jsc) compared to that of the reference cells without any variation in electrical properties. The enhanced Jsc is directly related to the enhancement of optical absorption efficiency by the LSPR of the Ag NPSs. We measured the photovoltaic characteristics of the plasmonic OSCs with various distances between the Ag NPSs and the P3HT:PCBM active layer, in which the PCEs of the plasmonic OSCs decreased with increasing distance. This suggests that the increase of photocurrent and optical absorption was due to near field enhancement (i.e., intensified incident light on the active layer) by the LSPR of the Ag NPSs.  相似文献   

7.
[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) / poly (3-hexylthiophene) (P3HT) heterojunction has not only the absorption in ultraviolet light for PCBM,but also the absorption in visible light for P3HT, which widens the incident light harvest range, improving the photoelectrical response of hybrid solar cell effectively.Using conducting polymers blend heterojunetion consisting of C60 derivatives PCBM and P3HT as charge carrier transferring medium to replace I3-/I- redox electrolyte and dye, a novel flexible solar cell was fabricated in this study.The influence of PCBM/P3HT mass ratio on the photovoltaic performance of the solar cell was also studied.flexible solar cell achieved a light-to-electric energy conversion efficiency of 1.04%, an open circuit voltage fill factor (FF) of 0.46.  相似文献   

8.
Femto-second laser irradiation on P3HT:PCBM solutions have been demonstrated to have a significant impact on the conformational structures and photovoltaic performance of the resultant thin films. The crystallinity and edge-on/face-on conformations of P3HT and the aggregation of PCBM can be manipulated by controlling the wavelength (400–800 nm) and illumination duration (1–3 h) of the lasers. Grazing incidence wide- and small-angle X-ray scattering (GIWAXS and GISAXS) have been simultaneously utilized to characterize the nanostructures of the P3HT:PCBM blend films spin-cast from pristine and laser-irradiated solutions. The results show that the crystallinity, π-π* stacking and face-on conformations of P3HT can be enhanced as a result of the laser irradiation at 500 nm for 3 h. Furthermore, the diffusion and aggregation of PCBM molecules are suppressed by the photo-induced dimerization, as evidenced by the Raman spectra of the films cast from laser-irradiated PCBM solutions. The time-resolved fluorescence decay profiles show the charge transfer efficiency is improved, which may correlate to the supramolecular ordering of the polythiophene chains and the optimized phase separation in P3HT:PCBM composite. In the P3HT:PCBM active layer of the organic solar cells, more efficient charge transport and fine interpenetrating networks can be achieved due to the improved conformational microstructures. Consequently, the short-circuit current densities and power conversion efficiencies can be enhanced in organic solar cells based on the laser-irradiation processed P3HT:PCBM solutions.  相似文献   

9.
The power conversion efficiency of solar cells can be optimized via an efficient charge collection by electrodes. In this study, a simple linear polyethylenimine (LPEI), which is an insulating polymer, was adopted as the cathode interfacial layer of poly(3-hexylthiophene) (P3HT):[6,6]-phenyl-C61-butyric acid methyl ester (PCBM)-based bulk-heterojunction organic solar cells (OSCs) with a non-inverted configuration. All photovoltaic parameters of the OSCs were significantly enhanced by depositing LPEI onto the oxygen plasma-treated P3HT:PCBM active layers. The causes of performance enhancement in OSCs were studied. Results revealed that the microstructure and morphology of the P3HT:PCBM layer were almost unaffected by the oxygen plasma treatment and the subsequent LPEI deposition. The X-ray photoelectron spectra of the specimens demonstrated that with the aid of oxygen plasma treatment, the linked LPEI molecules formed a well-aligned dipole layer on top of the P3HT:PCBM layer through the bonding of nitrogen (N) with oxygen (O). The results from quantum chemical calculations showed that the LPEI molecule with an N–O bond had a larger dipole moment at an appropriate direction than that without an N–O bond. By contrast, the LPEI molecules can form a dipole layer with a random orientation in the absence of N–O bonds. The conductive atomic force microscopy images of the specimens showed that the well-aligned dipole layer could facilitate electron transfer and could block hole transfer from the P3HT:PCBM to the cathodes. The well-aligned and augmented interface dipoles improved the charge selectivity at the cathodes and the photovoltaic performance of the devices.  相似文献   

10.
The impact of controlled solvent vapor exposure on the morphology, structural evolution, and function of solvent‐processed poly(3‐hexylthiophene):[6,6]‐phenyl‐C61‐butyric acid methyl ester (P3HT:PCBM) bilayers is presented. Grazing incident wide angle X‐ray scattering (GIWAXS) shows that the crystallization of P3HT increases with solvent exposure, while neutron reflectivity shows that P3HT simultaneously diffuses into PCBM, indicating that an initial bilayer structure evolves into a bulk heterojunction structure. Small angle neutron scattering (SANS) shows the agglomeration of PCBM and the formation of a PCBM pure phase when solvent annealing for 90 min. The structural evolution can be described as occurring in two stages: the first stage combines the enhanced crystallization of P3HT and diffusion of PCBM into P3HT, while the second stage entails the agglomeration of PCBM and formation of a PCBM pure phase. The phase separation of PCBM from P3HT is not driven by P3HT crystallinity, but is due to the concentration of PCBM exceeding the miscibility limit of PCBM in P3HT. Correlation of the morphology to photovoltaic activity shows that device performance significantly improves with solvent annealing for 90 min, indicating that both sufficient P3HT crystallization and formation of a PCBM pure phase are crucial in the optimization of the morphology of the active layer.  相似文献   

11.
Because co-deposition method has been utilized in a conventional thermal evaporation process to realize graded donor-acceptor architectures, we investigated an alternative intermittent electrospray co-deposition method for solution-processed organic photovoltaic cells. In this method, two solutions of poly(3-hexylthiophene-2,5-diyl) (P3HT) and phenyl-C61 butyric acid methyl ester (PCBM) were alternatively deposited using high-voltage pulse. Thus, the P3HT:PCBM blend thin film could be deposited even in a vacuum-free experimental setup. The optimum pulse width was found to be greater than 6 s to avoid an unexpected charge to the adjacent glass capillary, which causes the instable electrospray. The P3HT molecular ordering estimated from Raman spectroscopy and grazing incidence X-ray diffraction patterns was comparable to that estimated from the spin-coated device. In addition, the P3HT:PCBM ratio of the deposited thin film could be controlled by changing the ratio of the pulse width for the P3HT and PCBM solutions and was evaluated from the ultraviolet–visible absorption spectrum. Finally, a two layered bulk heterojunction structure with P3HT:PCBM was successfully demonstrated, leading to a maximum photoconversion efficiency of 3.1%. This value was 1.4-fold higher than that of the uniformly mixed bulk heterojunction device because of the high carrier-collection efficiency.  相似文献   

12.
This study demonstrated thin-film encapsulation of bulk-heterojunction polymer photovoltaic cells, utilizing a process based on atomic layer deposition (ALD) that both prevented degradation caused by ambient gases and served as an annealing step that increased the initial efficiency of the cells. With the ALD temperature set at 140 °C and the total deposition time set at 1 h, the photovoltaic cells, based on blended poly-3-hexylthiophene (P3HT) and [6,6]-phenyl C61 butyric acid methylester (PCBM), were optimally annealed during encapsulation, achieving a power conversion efficiency (PCE) of 3.66%. Encapsulating the cells with a 26 nm Al2O3/HfO2 nanolaminated film overcoated with an epoxy resin protection layer enabled the cells to obtain an in-air degradation rate that was similar to cells that were stored in nominally O2/H2O-free atmosphere. The nanolaminated structure of the encapsulation film resolved the issue of hydrolysis-induced aging observed with Al2O3 films, owing to the hydrophobicity of the HfO2 layers. Additionally, extended exposure of the ALD precursors during the ALD process significantly improved the coverage of the ALD films over the P3HT/PCBM active layer at the perimeter of the cells.  相似文献   

13.
Studies on the influence of four different solvents on the morphology and photovoltaic performance of bulk‐heterojunction films made of poly(3‐hexylthiophene) (P3HT) and [6,6]‐phenyl‐C61 butyric acid methyl ester (PCBM) via spin‐coating for photovoltaic applications are reported. Solvent‐dependent PCBM cluster formation and P3HT crystallization during thermal annealing are investigated with optical microscopy and grazing‐incidence wide‐angle X‐ray scattering (GIWAXS) and are found to be insufficient to explain the differences in device performance. A combination of atomic force microscopy (AFM), X‐ray reflectivity (XRR), and grazing‐incidence small‐angle X‐ray scattering (GISAXS) investigations results in detailed knowledge of the inner film morphology of P3HT:PCBM films. Vertical and lateral phase separation occurs during spin‐coating and annealing, depending on the solvent used. The findings are summarized in schematics and compared with the IV characteristics. The main influence on the photovoltaic performance arises from the vertical material composition and the existence of lateral phase separation fitting to the exciton diffusion length. Absorption and photoluminescence measurements complement the structural analysis.  相似文献   

14.
We report a comparative study on spectral and morphological properties of two blend systems for polymer solar cells: the donor material poly(3-hexylthiophene) (P3HT) in combination with the acceptor material of either [6,6]-phenyl-C61 butyric acid methyl ester (PCBM) or indene-C60 bisadduct (ICBA) that was reported to enhance efficiencies of polymer solar cells. Optical microscopy and grazing incidence X-ray scattering reveal the stronger tendency of PCBM to from larger and more ordered domains/grains than ICBA either in pure or blend films. Compared to PCBM, the presence of ICBA also substantially perturbs the organization and longer-range ordering of P3HT in increasing the ICBA ratio in blends. With larger and more ordered phase-separated domains, the P3HT/PCBM blend films exhibit significant optical scattering at higher PCBM ratios. Yet, such optical scattering is not significant for P3HT/ICBA blends (even with high ICBA ratios). Overall, results here suggest the reported higher efficiencies of P3HT/ICBA solar cells (vs. P3HT/PCBM cells) cannot be attributed to larger and/or more ordered phase-separated donor–acceptor domains and other characteristics play more important roles in this case.  相似文献   

15.
Organic photovoltaics are a promising alternative to silicon-based solar cells with benefits of low-cost production and large scalability. However, its performance is restricted by a non-equilibrium phase-separated morphology. Additive compositions of block copolymer P3HT-b-PFTBT are most likely to mix up and form donor and acceptor morphologies. The parallel bulk-heterojunction model was proposed to show the characteristic photovoltaic parameters and the effect of the parallel cascading heterojunction formation made up of isolated PCBM acceptor domains. We demonstrate block copolymer-based stretchable solar cells on plastic foil substrates, with good power conversion efficiency. To compare the efficiency and stretchability, organic photovoltaic devices were constructed using P3HT/PC61BM, PTB7/PC71BM and P3HT/P3HT-b-PFTBT/PCBM active layer combinations. We find that through rational design of the component ratio, the block-copolymer-based solar cell can withstand tensile strain up to 37%.  相似文献   

16.
In this study, a gold/poly(3-hexylthiophene):[6,6]-phenyl C61 butyric acid methyl ester/n-type silicon (Au/P3HT:PCBM/n-Si) metal-polymer-semiconductor (MPS) Schottky barrier diode (SBD) was fabricated. To accomplish this, a spin-coating system and a thermal evaporation were used for preparation of a P3HT/PCBM layer system and for deposition of metal contacts, respectively. The forward- and reverse-bias current–voltage (IV) characteristics of the MPS SBD at room temperature were studied to investigate its main electrical parameters such as ideality factor (n), barrier height (ΦB), series resistance (Rs), shunt resistance (Rsh), and density of interface states (Nss). The IV characteristics have nonlinear behavior due to the effect of Rs, resulting in an n value (3.09) larger than unity. Additionally, it was found that n, ΦB, Rs, Rsh, and Nss have strong correlation with the applied bias. All results suggest that the P3HT/PCBM interfacial organic layer affects the Au/P3HT:PCBM/n-Si MPS SBD, and that Rs and Nss are the main electrical parameters that affect the Au/P3HT:PCBM/n-Si MPS SBD. Furthermore, a lower Nss compared with that of other types of MPS SBDs in the literature was achieved by using the P3HT/PCBM layer. This lowering shows that high-quality electronic and optoelectronic devices may be fabricated by using the Au/P3HT:PCBM/n-Si MPS SBD.  相似文献   

17.
A study of how light‐induced degradation influences the fundamental photophysical processes in the active layer of poly(3‐hexylthiophene)/[6,6]‐phenyl C61‐butyric acid methyl ester (P3HT/PCBM) solar cells is presented. Non‐encapsulated samples are systematically aged by exposure to AM 1.5 illumination in the presence of dry air for different periods of time. The extent of degradation is quantified by the relative loss in the absorption maximum of the P3HT, which is varied in the range 0% to 20%. For degraded samples an increasing loss in the number of excitons within the P3HT domains is observed with longer ageing periods. This loss occurs rapidly, within the first 15 ps after photoexcitation. A more pronounced decrease in the population of polarons than excitons is observed, which also occurs on a timescale of a few picoseconds. These observations, complemented by a quantitative analysis of the polaron and exciton population dynamics, unravel two primary loss mechanisms for the performances of aged P3HT/PCBM solar cells. One is an initial ultrafast decrease in the polaron generation, apparently not related to the exciton diffusion to the polymer/fullerene interface; the second, less significant, is a loss in the exciton population within the photoexcited P3HT domains. The steady‐state photoinduced absorption spectra of degraded samples exhibits the appearance of a signal ascribed to triplet excitons, which is absent for non‐degraded samples. This latter observation is interpreted considering the formation of degraded sites where intersystem crossing and triplet exciton formation is more effective. The photovoltaic characteristics of same blends are also studied and discussed by comparing the decrease in the overall power conversion efficiency of solar cells.  相似文献   

18.
The charge transport in pristine poly(3‐hexylthiophene) (P3HT) films and in photovoltaic blends of P3HT with [6,6]‐phenyl C61 butyric acid methyl ester (PCBM) is investigated to study the influence of charge‐carrier transport on photovoltaic efficiency. The field‐ and temperature dependence of the charge‐carrier mobility in P3HT of three different regioregularities, namely, regiorandom, regioregular with medium regioregularity, and regioregular with very high regioregularity are investigated by the time‐of‐flight technique. While medium and very high regioregularity polymers show the typical absorption features of ordered lamellar structures of P3HT in the solid state even without previous annealing, films of regiorandom P3HT are very disordered as indicated by their broad and featureless absorption. This structural difference in the solid state coincides with partially non‐dispersive transport and hole mobilities µh of around 10?4 and 10?5 cm2 V?1 s?1 for the high and medium regioregularity P3HT, respectively, and a slow and dispersive charge transport for the regiorandom P3HT. Upon blending the regioregular polymers with PCBM, the hole mobilities are typically reduced by one order of magnitude, but they do not significantly change upon additional post‐spincasting annealing. Only in the case of P3HT with high regioregularity are the electron mobilities similar to the hole mobilities and the charge transport is, thus, balanced. Nonetheless, devices prepared from both materials exhibit similar power conversion efficiencies of 2.5%, indicating that very high regioregularity may not substantially improve order and charge‐carrier transport in P3HT:PCBM and does not lead to significant improvements in the power‐conversion efficiency of photovoltaic devices.  相似文献   

19.
The morphological, bipolar charge‐carrier transport, and photovoltaic characteristics of poly(3‐alkylthiophene) (P3AT):[6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) blends are studied as a function of alkyl side‐chain length m, where m equals the number of alkyl carbon atoms. The P3ATs studied are poly(3‐butylthiophene) (P3BT, m = 4), poly(3‐pentylthiophene) (P3PT, m = 5), and poly(3‐hexylthiophene) (P3HT, m = 6). Solar cells with these blends deliver similar order of photo‐current yield (exceeding 10 mA cm?2) irrespective of side‐chain length. Power conversion efficiencies of 3.2, 4.3, and 4.6% are within reach using solar cells with active layers of P3BT:PCBM (1:0.8), P3PT:PCBM (1:1), and P3HT:PCBM (1:1), respectively. A difference in fill factor values is found to be the main source of efficiency difference. Morphological studies reveal an increase in the degree of phase separation with increasing alkyl chain length. Moreover, while P3PT:PCBM and P3HT:PCBM films have similar hole mobility, measured by hole‐only diodes, the hole mobility in P3BT:PCBM lowers by nearly a factor of four. Bipolar measurements made by field‐effect transistor showed a decrease in the hole mobility and an increase in the electron mobility with increasing alkyl chain length. Balanced charge transport is only achieved in the P3HT:PCBM blend. This, together with better processing properties, explains the superior properties of P3HT as a solar cell material. P3PT is proved to be a potentially competitive material. The optoelectronic and charge transport properties observed in the different P3AT:PCBM bulk heterojunction (BHJ) blends provide useful information for understanding the physics of BHJ films and the working principles of the corresponding solar cells.  相似文献   

20.
This Full Paper focuses on the preparation of single‐walled or multi‐walled carbon nanotube solutions with regioregular poly(3‐hexylthiophene) (P3HT) and a fullerene derivative 1‐(3‐methoxycarbonyl) propyl‐1‐phenyl[6,6]C61 (PCBM) using a high dissolution and concentration method to exactly control the ratio of carbon nanotubes (CNTs) to the P3HT/PCBM mixture and disperse the CNTs homogeneously throughout the matrix. The CNT/P3HT/PCBM composites are deposed using a spin‐coating technique and characterized by absorption and fluorescence spectroscopy and by atomic force microscopy to underline the structure and the charge transfer between the CNTs and P3HT. The performance of photovoltaic devices obtained using these composites as a photoactive layer mainly show an increase of the short circuit current and a slight decrease of the open circuit voltage which generally leads to an improvement of the solar cell performances to an optimum CNT percentage. The best results are obtained with a P3HT/PCBM (1 : 1) mixture with 0.1 wt % multi‐walled carbon nanotubes with an open circuit voltage (Voc) of 0.57 V, a current density at the short‐circuit (Isc) of 9.3 mA cm–2 and a fill factor of 38.4 %, which leads to a power conversion efficiency of 2.0 % (irradiance of 100 mW cm–2 spectroscopically distributed following AM1.5).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号