首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Charge transport in poly(2-methoxy, 5-(2′-ethyl-hexyloxy)-p-phenylene vinylene) (MEH-PPV)-based hole-only diodes is investigated at high electric fields and low temperatures using a novel diode architecture. Charge carrier densities that are in the range of those in a field-effect transistor are achieved, bridging the gap in the mobility versus charge carrier density plot between polymer-based light-emitting diodes and field-effect transistors. The extended field range that is accessed allows us to discuss the applicability of current theoretical models of charge transport, using numerical simulations. Finally, within a simple approximation, we extract the hopping length for holes in MEH-PPV directly from the experimental data at high fields, and we derive a value of 1.0 ± 0.1 nm.  相似文献   

2.
We report the effect of an electron-donating unit on solid-state crystal orientation and charge transport in organic field-effect transistors (OFETs) with thienoisoindigo (TIIG)-based small molecules. End-capping of different electron-donor moieties [benzene (Bz), naphthalene (Np), and benzofuran (Bf)] onto TIIG (giving TIIG-Bz, TIIG-Np, and TIIG-Bf) is resulted in different electronic energy levels, solid-state morphologies and performance in OFETs. The 80 °C post-annealed TIIG-Np OFETs show the best device performance with a best hole mobility of 0.019 cm2 V−1 s−1 and threshold voltage of −8.6 ± 0.9 V using top gate/bottom contact geometry and a CYTOP gate dielectric. We further investigated the morphological microstructure of the TIIG-based small molecules by using grazing incidence wide angle X-ray scattering, atomic force microscopy and a polarized optical microscope. The electronic transport levels of the TIIG-based small molecules in thin-film states were investigated using ultraviolet photoelectron spectroscopy to examine the charge injection properties of the gold electrode.  相似文献   

3.
The charge injection barriers in organic field-effect transistors (OFETs) seem to be far less critical as compared to organic light-emitting diodes (OLEDs). Counter intuitively, we show that the origin is image-force lowering of the barrier due to the gate bias at the source contact, although the corresponding gate field is perpendicular to the channel current. In coplanar OFETs, injection barriers up to 1 eV can be surmounted by increasing the gate bias, enabling extraction of bulk transport parameters in this regime. For staggered transistors, however, the injection is gate-assisted only until the gate bias is screened by the accumulation channel opposite to the source contact. The gate-assisted injection is supported by two-dimensional numerical charge transport simulations that reproduce the gate-bias dependence of the contact resistance and the typical S-shaped output curves as observed for OFETs with high injection barriers.  相似文献   

4.
We report that solution-based treatment of Cu electrodes with strong electron acceptor molecules significantly decreases the contact resistance towards organic semiconductors, which is advantageous for applications such as organic field-effect transistors (OFETs). Spin-coating solutions of tetracyanoquinodimethane (TCNQ) or tetrafluoro-tetracyanoquinodimethane (F4-TCNQ) onto Cu electrodes results in strongly chemisorbed acceptor (sub-)monolayers, which increase the electrode work function from 4.5 eV (bare Cu) up to 5.2 eV (F4-TCNQ-treated) even in air, as evidenced by X-ray photoelectron spectroscopy and photoelectron yield spectroscopy. The use of such modified electrodes in flexible OFETs with poly(3-hexylthiophene)-dithienyltetrafluorobenzene (P3HT-TFT) as semiconductor lead to a twofold increase of the on-current in the saturation regime and a decrease of the threshold voltage from ?20 V (bare Cu) to ?7 V (F4-TCNQ-treated). These results confirm that this simple solution-based process is viable for lowering organic/metal contact resistances in organic electronic devices.  相似文献   

5.
Solution-processed thin film transistors can be implemented using simple and low cost fabrication, and are the best candidates for commercialization due to their application to a range of wearable electronics. We report an ambipolar charge injection interlayer that can improve both hole and electron injection in organic field-effect transistors (OFETs) with inexpensive source-drain electrodes. The solution processed ambipolar injection layer is fabricated by selective dispersion of semiconducting single walled carbon nanotubes using poly(9,9-dioctylfluorene). OFETs with molybdenum (Mo) contacts and interlayer (Mo/interlayer OFETs) exhibit superior performance, including higher hole and electron mobilities, device yield, lower threshold voltages, and lower trap densities than those of bare transistors. While OFETs with Mo contacts show unipolar p-type behaviour, Mo/interlayer OFETs display ambipolar transport due to significant enhancement of electron injection. In the p-type region, transistor performance is comparable to devices with gold (Au). Hole mobility is increased approximately ten-fold over devices with only Mo contacts. The electron mobility of Mo/interlayer OFETs is 0.05 cm2V−1s−1, which is higher than devices with Au electrodes. The p-type contact resistances of Mo/interlayer OFETs are half those of OFETs with Mo contacts. Trap density in Mo/interlayer OFETs is one order magnitude lower than that of pristine devices. We also demonstrate that this approach is extendible to other metals (nickel) and n-type semiconductors with different energy levels. Injection by tunnelling is suggested as the mechanism of ambipolar injection.  相似文献   

6.
《Organic Electronics》2014,15(5):1050-1055
Organic field-effect transistors (OFETs) were fabricated through a solution process with a donor–acceptor (D–A) conjugated polymer poly{4,8-bis(2′-ethylhexylthiophene)benzo [1,2-b;3,4-b′]difuran-alt-5,5-(4′,7′-di-2-thienyl-5′,6′-dioctyloxy-2′,1′,3′-benzothiadiazole)} (PBDFTDTBT) as the active layer, which is a highly efficient D–A conjugated polymer as a donor in polymer solar cells with a power conversion efficiency (PCE) over 6.0%. The OFET devices showed a hole mobility of 0.05 cm2/Vs and an on/off ratio of 4.6 × 105. Those are one of the best performance parameters for OFETs based on D–A conjugated polymers including benzo[1,2-b:4,5-b′]dithiophene (BDT) or benzo[1,2-b:4,5-b′]difuran (BDF) unit. The photoresponse of OFETs was investigated by modulating light with various intensities. The devices produced a photosensitivity (Ilight/Idark) of 1.2 × 105 and a photoresponsivity of 360 mA W1 under white light illumination. The drain current in saturation region increases gradually with increasing illumination intensity. The threshold voltage exhibited a positive shift from −15.6 V in darkness to 27.8 V under illumination, which can be attributed to the well-known photovoltaic effect resulting from the transport of photogenerated holes and trapping of photogenerated electrons near the source electrode in organic phototransistors. Meanwhile, the devices showed good stability and with no obvious degeneration for 3 months in air. The study suggests that D–A conjugated polymers including BDF unit can be potentially applied in OFETs and organic phototransistors in addition to highly efficient polymer solar cells.  相似文献   

7.
Control of the threshold voltage and the subthreshold swing is critical for low voltage transistor operation. In this contribution, organic field-effect transistors (OFETs) operating at 1 V using ultra-thin (∼4 nm), self-assembled monolayer (SAM) modified aluminium oxide layers as the gate dielectric are demonstrated. A solution-processed donor–acceptor semiconducting polymer poly(3,6-di(2-thien-5-yl)-2,5-di(2-octyldodecyl)-pyrrolo[3,4-c]pyrrole-1,4-dione)thieno[3,2-b]thiophene) (PDPP2TTT) is used as the active layer. It is shown that the threshold voltage of the fabricated transistors can be simply tuned by carefully controlling the composition of the applied SAM. The optimised OFETs display threshold voltages around 0 V, low subthreshold slopes (150 ± 5 mV/dec), operate with negligible hysteresis and show average saturated field-effect mobilities in excess of 0.1 cm2/V s at 1 V.  相似文献   

8.
Operational stability of organic devices at above-room-temperatures in ambient environment is of imminent practical importance. In this report, we have investigated the charge transport and degradation mechanisms in pentacene based organic field effect transistors (OFETs) operating in the temperatures ranging from 25 °C to 150 °C under ambient conditions. The thin film characterizations techniques (X-ray photoelectron spectroscopy, X-ray diffraction and atomic force microscopy) were used to establish the structural and chemical stability of pentacene thin films at temperatures up to 150 °C in ambient conditions. The electrical behavior of OFETs varies differently in different temperature bracket. Mobility, at temperatures below 110 °C, is found to be thermally activated in presence of traps and temperature independent in absence of traps. At temperatures above 110 °C mobility degrades due to polymorphism in pentacene or interfacial properties. The degradation of mobility is compensated with the decrease in threshold voltage at high temperatures and OFETs are operational at temperatures as high as 190 °C. 70 °C has been identified as the optimum temperature of operation for our OFETs where both device behavior and material properties are stable enough to ensure sustainable performance.  相似文献   

9.
Bidirectional negative differential resistance (NDR) at room temperature with high peak-to-valley current ratio (PVCR) of ~10 are observed from vertical organic light-emitting transistor indium-tin oxide (ITO)/N,N′-di(naphthalene-1-yl)-N,N′-diphenyl-benzidine) (α-NPD)(60 nm)/Al(30 nm)/α-NPD(60 nm)/tris-(8-hydroxyquinoline) aluminium (Alq3)(50 nm)/Al by narrowing the transport channels for charge carriers with a thick-enough middle Al gate electrode layer to block charge carriers transporting from source electrode to drain electrode. When the transport channel for charge carriers gets large enough, the controllability of gate bias on the drain–source current gets weaker and the device almost works as an organic light-emitting diode only. Therefore, it provides a very simple way to produce NDR device with dominant bidirectional NDR and high PVCR (~10) at room temperature by narrowing transport channels for charge carriers in optoelectronics.  相似文献   

10.
《Organic Electronics》2008,9(2):191-197
We report on the realization of fully flexible and transparent n-type and ambipolar all-organic OFETs. A double layer, pentacene-C60 heterojunction, was used as the semiconductor layer. The contacts were made with poly(ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) and patterned by means of Soft Lithography MicroContact Printing (μCP). Interestingly, as demonstrated by atomic force microscopy and X-ray diffraction investigations, growing C60 on a pre-deposited pentacene buffer layer leads to a clear improvement in the morphology and crystallinity of the deposited film allowing to obtain n-type conduction despite the very high electron injection barrier at the interface between PEDOT:PSS and C60. As a result, it was possible to realize n-type and ambipolar all-organic OFETs by optimizing the thicknesses of the pentacene buffer layer. All devices, measured in air, worked in accumulation mode with mobilities up to 1 × 10−2 cm2/V s and 3.5 × 10−4 cm2/V s for p-type and n-type regimes, respectively. This is particularly interesting because it demonstrates, also for n-type and ambipolar transistors, the possibility of avoiding problems normally associated to metal contacts: the lack of mechanical robustness, flexibility, and the unfeasibility of realizing contacts with low cost techniques like printing or soft lithography. These results confirm the importance of the substrate properties for the ordered growth of organic semiconductors, which determines the transport properties of organic materials.  相似文献   

11.
Light-emitting field effect transistors (LEFETs) are a class of organic optoelectronic device capable of simultaneously delivering the electrical switching characteristics of a transistor and the light emission of a diode. We report on the temperature dependence of the charge transport and emissive properties in a model organic heterostructure LEFET system from 300 K to 135 K. We study parameters such as carrier mobility, brightness, and external quantum efficiency (EQE), and observe clear thermally activated behaviour for transport and injection. Overall, the EQE increases with decreasing temperature and conversely the brightness decreases. These contrary effects can be explained by a higher recombination efficiency occurring at lower temperatures, and this insight delivers new knowledge concerning the optimisation of both the transport and emissive properties in LEFETs.  相似文献   

12.
Fabrication of organic field‐effect transistors (OFETs) using a high‐throughput printing process has garnered tremendous interest for realizing low‐cost and large‐area flexible electronic devices. Printing of organic semiconductors for active layer of transistor is one of the most critical steps for achieving this goal. The charge carrier transport behavior in this layer, dictated by the crystalline microstructure and molecular orientations of the organic semiconductor, determines the transistor performance. Here, it is demonstrated that an inkjet‐printed single‐droplet of a semiconducting/insulating polymer blend holds substantial promise as a means for implementing direct‐write fabrication of organic transistors. Control of the solubility of the semiconducting component in a blend solution can yield an inkjet‐printed single‐droplet blend film characterized by a semiconductor nanowire network embedded in an insulating polymer matrix. The inkjet‐printed blend films having this unique structure provide effective pathways for charge carrier transport through semiconductor nanowires, as well as significantly improve the on‐off current ratio and the environmental stability of the printed transistors.  相似文献   

13.
We report on organic field-effect transistors (OFETs) with sub-micrometer channels fabricated on plastic substrates with fully direct-written electrical contacts. In order to pattern source and drain electrodes with high resolution and reliability, we adopted a combination of two digital, direct writing techniques: ink-jet printing and femtosecond laser ablation. First silver lines are deposited by inkjet printing and sintered at low temperature and then sub-micrometer channels are produced by highly selective femtosecond laser ablation, strongly improving the lateral patterning resolution achievable with inkjet printing only. These direct-written electrodes are adopted in top gate OFETs, based on high-mobility holes and electrons transporting semiconductors, with field-effect mobilities up to 0.2 cm2/V s. Arrays of tens of devices have been fabricated with high process yield and good uniformity, demonstrating the robustness of the proposed direct-writing approach for the patterning of downscaled electrodes for high performance OFETs, compatibly with cost-effective manufacturing of large-area circuits.  相似文献   

14.
《Organic Electronics》2014,15(8):1799-1804
Copper phthalocyanine (CuPc)-based thin film transistors were fabricated using CuPc films grown under different deposition pressure (Pdep) (ranging from 1.8 × 10−4 Pa to 1.0 × 10−1 Pa). The transistor performance highly depended on Pdep. A field-effect mobility of 2.1 × 10−2 cm2/(V s) was achieved under 1.0 × 10−1 Pa. Detailed investigations revealed that Pdep modulates the molecular packing and orientation of the organic films grown on a SiO2/Si substrate and influences the charge transport. Furthermore, from a device physics point of view, contact resistance of the fabricated transistors decreased when Pdep increased, which was beneficial in reducing energy consumption.  相似文献   

15.
Light emitting field-effect transistors (LEFETs) are a class of next generation devices which combine the switching properties of field-effect transistors (FETs) with light emitting capabilities of organic light-emitting diodes (OLEDs) in a single device architecture. Current LEFET architectures suffer from inefficient charge injection of electrons and holes from the source and drain electrodes, leading to unbalanced charge transport and hence poor device performance. Here we report a simple fabrication method for LEFETs that delivers asymmetric source and drain electrodes comprised of low and high work function materials. The interdigitated low and high work function source–drain electrodes consist of combinations of organic materials, salts, metal oxides and metals. Using this method we were able to obtain a maximum EQE of up to 1.2% in a single layer device with Super Yellow as the active material.  相似文献   

16.
We report on charge transport and density of trap states (trap DOS) in ambipolar diketopyrrolopyrrole-benzothiadiazole copolymer thin-film transistors. This semiconductor possesses high electron and hole field-effect mobilities of up to 0.6 cm2/V-s. Temperature and gate-bias dependent field-effect mobility measurements are employed to extract the activation energies and trap DOS to understand its unique high mobility balanced ambipolar charge transport properties. The symmetry between the electron and hole transport characteristics, parameters and activation energies is remarkable. We believe that our work is the first charge transport study of an ambipolar organic/polymer based field-effect transistor with room temperature mobility higher than 0.1 cm2/V-s in both electrons and holes.  相似文献   

17.
We report on the influence of Focused Ion Beam (FIB) exposure on TIPS-pentacene layers which are often used in solution-processable organic field-effect transistors (OFETs) and in many cases yield a field-effect mobility in the order of 1 cm2/V s. We exposed TIPS-pentacene layers to a Ga+ ion beam and measured the device characteristics of OFETs. We observed a strong influence of the FIB on JV characteristics of TIPS-pentacene-based devices and determined an increase in the OFET mobility and on–off ratio and a decrease of the threshold voltage. To further investigate the underlying process we analyzed FIB-exposed and unexposed TIPS-pentacene samples via X-ray Photoelectron Spectroscopy (XPS). Exposed samples show a clear Ga XPS signature and the C1s peak shifts about 400 meV towards smaller binding energies which is an indicator for a Fermi energy shift closer to the valence states and hence p-doping of TIPS-pentacene. With Scanning Kelvin Probe Microscopy (SKPM) we could clearly distinguish FIB exposed areas from the unexposed areas. For exposed areas the work function increases about 200 meV which is consistent with XPS measurements and again displays that the implanted Ga+ ions serve as p-dopants. Furthermore we took SKPM measurements on operating OFETs and could investigate a dramatic change in local conductance on FIB exposed areas. This demonstrates a novel way of nanopatterning conductive paths in organic semiconductors.  相似文献   

18.
《Organic Electronics》2014,15(2):435-440
Ultrathin pentacene films resemble benchmark and model materials for organic field-effect transistors (OFETs). We employ scanning transmission X-ray microspectroscopy (STXM) and confocal Raman microspectroscopy as highly resolving probes to obtain insight into the correlation of morphology and charge transport in pentacene OFETs. By combining the operation-induced intensity increase in Raman-active bands with micromorphology, we are able to visualize charge-induced effects, in particular charge trapping in pentacene OFETs during operation. The high sensitivity and specificity of Raman microscopy allows to distinguish between orientation and charge-induced effects and thus to locate the trapped charges at grain boundaries.  相似文献   

19.
Ambipolar carrier transport is demonstrated in an optically controllable organic field-effect transistor, where a benzothienothiophene-substituted diarylethene (BTT-DAE) thin film is employed directly as the transistor channel. A closed-ring isomer, which is produced by ultraviolet (UV) light irradiation, allows the carrier injection of both holes and electrons from source-drain electrodes into the BTT-DAE layer. Moreover, alternate UV or visible (VIS) light irradiation induces marked switching in the drain currents caused by reversible photoisomerization between closed-ring (semiconductor) and open-ring (insulator) isomers. The light-driven on/off ratio, which is defined by the ratio of the drain currents in the sample after UV or VIS light irradiation, reaches 240 for hole transport. The value is comparable to the gate-voltage-induced on/off ratio of 160. Our findings, therefore, have a potential to lead to the construction of new optoelectronic devices such as photoreconfigurable logic circuits and light emitting transistors.  相似文献   

20.
《Organic Electronics》2008,9(5):834-838
Novel light-emitting transistors (OLETs) with the split-gate electrode divided into two parts for independent control of electron and hole were devised, in addition to the PN-hetero-boundary combined with the electron and hole transport materials along carrier channels. With this device structure, the on/off ratio of 1000 or more in the current and the luminance were achieved. Which is 100 times or more large compared with earlier reported single-gate type PN-hetero-boundary light-emitting transistor [N. Suganuma, N. Shimoji, Y. Oku, K. Matsushige, Novel organic light-emitting transistors with PN-heteroboundary carrier recombination sites fabricated by lift-off patterning of organic semiconductor thin films, J. Mater. Res. 22 (2007) 2982; N. Suganuma, N. Shimoji, PCT Int. Appl. WO2007/010925; N. Suganuma, PCT Int. Appl. WO2007/026703]. In this device, the luminance of about 100 cd/m2 was obtained at 15 V in the source–source voltage (also known as the source–drain voltage) with the turn-on voltage of less than 10 V. The horizontal PN-hetero-boundary structure was implemented for the first time by using the photolithographic patterning of the organic semiconductor thin-films. This patterning technique can be applied in fabricating not only organic light-emitting transistors reported in this article but also organic integrated circuit or organic display.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号