首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Organic Electronics》2014,15(8):1745-1752
The performance of both inverted and conventional polymer solar cells (PSCs) were examined with a low-temperature, solution-processed synthesized TiO2 nanoparticles (TiO2 NPs) as the electron extraction layer. The performance of inverted PSCs based on P3HT:PCBM bulk-heterojunction with a TiO2 NPs layer was dramatically improved and the highest power conversion efficiency (PCE) of 4.56% was achieved via 24 h exposure in air, which is one of the highest PCEs for P3HT:PCBM bulk-heterojunction PSCs using TiO2 as electron extraction layer. Meanwhile, the performance of inverted PSCs was superior to regular PSCs. Mott-Schottky capacitance analysis was carried out for both inverted and regular PSCs to obtain the built-in potential, the depletion width, as well as the doping level of the active layer, which all support the performance improvement of PSCs devices with inverted structure. In addition, inverted PSCs show excellent stability in air without encapsulation. The PCE can retain 87% of its original values after 400 h exposure in air, which is much better than that of regular PSCs. The results indicate that solution-processed TiO2 NPs shows great potential applications in the fabrication of highly efficient and stable inverted PSCs as well as large-area, flexible printed PSCs.  相似文献   

2.
It is well known that organic solar cells (OSCs) with inverted geometry have not only demonstrated a better stability and longer device life time but also have shown improved power conversion efficiency (PCE). Recent studies exhibit that incorporation of metal and/or semiconducting nanoparticles (NPs) can further increase the PCE for OSCs. In this present work, we have synthesized SiO2 NPs of various sizes (25, 50, 75 and 100 nm) using the modified Stober method and incorporated them into P3HT:PCBM photoactive layer and ZnO based electron transport layer (ETL) in order to investigate the light trapping effects in an OSC. Absorption studies have shown a considerable increase in photo absorption in both cases. The fabricated devices demonstrated 13% increase in the PCE when SiO2 NPs are incorporated in P3HT:PCBM photoactive layer, whereas PCE was increased by 20% when SiO2 NPs are incorporated in ZnO based ETL. Mott–Schottky analysis and impedance spectroscopy measurements have been carried out to determine the depletion width and global mobility for both the devices. The possible reason for PCE enhancement and the role of SiO2 NPs in active layer and ZnO ETL are explained on the basis of the results obtained from Mott–Schottky analysis and impedance spectroscopy measurements.  相似文献   

3.
We investigated the effect of organic polar solvent on the properties of [6,6]-phenyl-C71-butyric acid methyl ester (PCBM) films and poly(3-hexylthiophene) (P3HT):PCBM blend films employed as active layer in organic photovoltaic. The nanoscale morphology and the electrical characteristics of the P3HT:PCBM film can be controlled through organic polar solvent exposure, which exhibited with a short-circuit current density of 8.64 mA/cm2, an open circuit voltage of 0.63 V, and a power conversion efficiency of 3.29% under AM 1.5 illumination with a light intensity of 100 mW/cm2. By exposing the active layer films to organic polar solvent a favorable phase separation in the P3HT:PCBM films is obtained. The improved power conversion efficiency can be to the high conductivity and high surface area of the P3HT:PCBM layer treated with organic polar solvent.  相似文献   

4.
Perovskite solar cells (PSCs) with a simple device structure are particularly attractive due to their low cost and convenient fabrication process. Herein, highly efficient, electron-blocking layer (EBL)-free planar heterojunction (PHJ) PSCs with a structure of ITO/CH3NH3PbI3/PCBM/Al were fabricated via low-temperature, solution-processed method. The power conversion efficiency (PCE) of over 11% was achieved in EBL-free PHJ-PSCs, which is closed to the value of PSC devices with the PEDOT:PSS as the EBL. It is impressed that the open-circuit voltage (Voc) up to 1.06 V, an average value of 1.0 V for 43 devices, was obtained in EBL-free PHJ-PSCs. The electrochemical impedance spectroscopy (EIS) results suggested that the high PCE and Voc are attributed to the relatively large recombination resistance and low contact resistance in EBL-free PHJ-PSCs. The solution-processed, EBL-free PHJ structure paves a boulevard for fabricating high-efficiency and low-cost PSCs.  相似文献   

5.
Poly (3-hexylthiophene-2, 5-diyl) (P3HT) and its blend with Phenyl-C61-Butyric acid-Methyl-Ester (PCBM) and fullerene (C60) thin films were prepared and their electrical properties for memory applications were studied. Due to doping, a sharp decrease in the resistance for a P3HT:PCBM:C60 device was observed at around 70 °C which makes it useful for thermal switching applications. Addition of C60 to P3HT:PCBM blend gave a high value for RRESET/RSET in thermal switching. For bias switching, threshold voltage reduces to 1.4 V from 25 V with the addition of C60 to P3HT layer.  相似文献   

6.
We used continuous wave photoinduced absorption (PIA) spectroscopy to investigate long lived polarons in blend of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and regio-regular poly (3-hexylthiophene) (RR-P3HT), and in blend of PCBM and 2-methoxy-5-(2-ethylhexyloxy) poly(para-phenylenevinylene) (MEH-PPV). In millisecond time regime, delocalized polarons (DP) and localized polarons (LP) in RR-P3HT/PCBM as well as polarons in MEH-PPV/PCBM all exhibit dispersive bimolecular recombination process which was limited by the trap states, with the average lifetimes of those polarons inverse proportional to the square root of pump intensity (I). The recombination in RR-P3HT/PCBM was weak temperature dependence with small thermal activation energy, Δ for DPs and LPs of 25 meV and 13 meV, respectively; in contrast, Δ for polarons in amorphous MEH-PPV/PCBM was ~160 meV. Furthermore, we proved that the values of Δ for both of LP and DP increase, as well as the relatively intensity ratio of DP and LP decreases, in an intentionally degraded RR-P3HT/PCBM film. Overall, it is demonstrated that steady state photomodulation technique with thermal-activated-recombination analysis can be applied to evaluate polymer (dis)order in bulk heterojunction films.  相似文献   

7.
A fluorene-centered perylene monoimide dimer, PMI-F-PMI with a partly non-coplanar configuration has been developed as a potential non-fullerene acceptor for organic solar cells (OSCs). The optimum power conversion efficiency (PCE) of the OSC based on PMI-F-PMI as acceptor and poly (3-hexyl thiophene) (P3HT) as donor is up to 2.30% after annealing at 150 °C. The PCE of 2.30% is the highest value for the OSCs based on P3HT donor and non-fullerene acceptor lies in that PMI-F-PMI’s lowest unoccupied molecular orbital (LUMO) level around −3.50 eV matches well with the donor P3HT to produce higher open-circuit voltage (Voc) of 0.98 V. Meanwhile, PMI-F-PMI makes remarkable contribution to devices’ light absorption as the maximum EQE (30%) of the devices is at 512 nm, same to the maximum absorption wavelength of PMI-F-PMI. The other favorable characteristics of PMI-F-PMI in bulk heterojunction (BHJ) active layers is proved through the photo current density measures, the relatively balanced electron–hole transport, and the smooth morphology with root mean square (RMS) value of 1.86 nm. For these advantages, PMI-F-PMI overwhelms its sister PMI-F and parent PMI as an acceptor in BHJ solar cells.  相似文献   

8.
We report on the adhesion of weak interfaces in inverted P3HT:PCBM-based polymer solar cells (OPV) with either a conductive polymer, PEDOT:PSS, or a metal oxide, molybdenum trioxide (MoO3), as the hole transport layer. The PEDOT:PSS OPVs were prepared by spin or spray coating on glass substrates, or slot-die coating on flexible PET substrates. In all cases, we observed adhesive failure at the interface between the P3HT:PCBM with PEDOT:PSS layer. The adhesion energy measured for the solar cells made on glass substrates was about 1.8 J/m2, but only 0.5 J/m2 for the roll-to-roll processed flexible solar cells. The adhesion energy was insensitive to the PEDOT:PSS layer thickness in the range of 10–40 nm. A marginal increase in adhesion energy was measured with increased O2 plasma power. Compared to solution processed PEDOT:PSS, we found that thermally evaporated MoO3 adheres less to the P3HT:PCBM layer, which we attributed to the reduced mixing at the MoO3/P3HT:PCBM interface during the thermal evaporation process. Insights into the mechanisms of delamination and the effect of different material properties and processing parameters yield general guidelines for the design of more reliable organic photovoltaic devices.  相似文献   

9.
《Organic Electronics》2014,15(4):835-843
TiO2 sols synthesized with a facile solution-based method were used as a buffer layer between the active layer and the cathode Al in conventional structure polymer solar cells (PSCs). Using transmission electron microscopy (TEM), selected area electron diffraction (SAED), X-ray diffraction (XRD) and atomic force microscopy (AFM), the morphological and crystallographic properties of synthesized TiO2 nanoparticles (TiO2 NPs) as well as the buffer layer were studied in detail. It was observed that by increasing H2O in the process of peptization both the crystallinity and particle size of TiO2 NPs were enhanced, while the particles in sol showed a narrower size distribution conformed by dynamic light scattering. Inserting TiO2 NPs as a buffer layer in conventional structure PSCs, both the power conversion efficiency (PCE) and stability were improved dramatically. PSCs based on the structure of ITO/PEDOT:PSS/P3HT:PCBM/TiO2 NPs/Al showed the short-circuit current (Jsc) of 12.83 mA/cm2 and the PCE of 4.24%, which were improved by 31% and 37%, respectively comparing with the reference devices without a TiO2 buffer layer. The stability measurement showed that PSC devices with a TiO2 NPs buffer layer could retain 80% of the original PCEs after exposed in air for 200 h, much better than the devices without such a buffer layer. The effect can be attributed to the protection by the buffer layer against oxygen and H2O diffusion into the active layers. The observations indicate that TiO2 NPs synthesized by facile solution-based method have great potential applications in PSCs, especially for large-area printed PSCs.  相似文献   

10.
The main goal of the paper was investigation of influence of aluminum electrode preparation via thermal evaporation (TE) and the magnetron sputtering (MS) on power conversion efficiency (PCE) of polymeric solar cells. The photovoltaic properties of such three kinds devices based on poly(3-hexylthiophene-2,5-diyl) (P3HT) as ITO/P3HT/Al, ITO/P3HT:PCBM (1:1, w/w)/Al and ITO/PEDOT:PSS/P3HT:PCBM (1:1, w/w)/Al were investigated. For the constructed devices impedance spectroscopy were analyzed. For devices lack of PEDOT:PSS layer or lack of PCBM, photovoltaic parameters were very low and similar to the parameters obtained for device with Al electrode prepared by magnetron sputtering. The devices comprising PEDOT:PSS with P3HT:PCBM showed the best photovoltaic parameters such as a VOC of 0.60 V, JSC of 4.61 mA/cm2, FF of 0.21, and PCE of 5.7 × 10?1%.  相似文献   

11.
High-performance tandem organic light-emitting diodes (OLEDs) employing a buffer-modified C60/pentacene organic semiconductor heterojunction (OHJ) as a charge generation layer (CGL) are demonstrated. The unique cooperation of charge generation, transport, and extraction processes occurred in the OHJ-based CGL remarkably reduces the operational voltage. As a result, an approximately twofold enhancement in power efficiency (21.9 lm W?1 VS 10.1 lm W?1) can be achieved that has previously been suggested to be difficult for tandem OLEDs. When the pentacene is replaced by zinc phthalocyanine (ZnPc), copper phthalocyanine (CuPc), or phthalocyanine (H2Pc), a similar power efficiency improvement can be also achieved. The novel design concept of the buffer-modified OHJ-based CGL is superior to that of the conventional CGLs. The investigations on the operational mechanism are performed, from which it is found that the mobile charge carriers firstly are needed to be accumulated at both sides of the heterojunction interface and then transport along the two organic semiconductors in terms of their good carrier transport characteristics under an external electrical field, and finally inject into the corresponding electroluminescent (EL) units by the interfacial layers.  相似文献   

12.
We demonstrate plasmonic effects in bulk heterojunction organic solar cells (OSCs) consisting of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) by incorporating silver (Ag) triangular shaped nanoparticles (nanoprisms; NPSs) into a poly(3,4-ethylenedioxythiophene) buffer layer. The optical absorption and geometric characteristics of the Ag NPSs were investigated in terms of their tunable in-plane dipole local surface plasmon resonance (LSPR) bands. The photovoltaic characteristics showed that the power conversion efficiency (PCE) of the plasmonic OSCs was enhanced by an increase of short circuit current (Jsc) compared to that of the reference cells without any variation in electrical properties. The enhanced Jsc is directly related to the enhancement of optical absorption efficiency by the LSPR of the Ag NPSs. We measured the photovoltaic characteristics of the plasmonic OSCs with various distances between the Ag NPSs and the P3HT:PCBM active layer, in which the PCEs of the plasmonic OSCs decreased with increasing distance. This suggests that the increase of photocurrent and optical absorption was due to near field enhancement (i.e., intensified incident light on the active layer) by the LSPR of the Ag NPSs.  相似文献   

13.
We investigate the effects of adding a functionalized squaraine donor 2,4-bis[4-(N,N-diphenylamino)-2,6-dihydroxyphenyl] squaraine (DPSQ) into a conventional poly(3-hexylthiophene)(P3HT):[6,6]-phenyl C61-butyric acid methyl ester (PCBM) polymer bulk heterojunction photovoltaic cell. The near infrared absorption of the blend was enhanced by the DPSQ additive, resulting in an increased power conversion efficiency of the P3HT:PCBM devices by >20%. A maximum power conversion efficiency of 3.4 ± 0.3% and an external quantum efficiency as high as 55% was achieved for a P3HT:PCBM blend that included 5 wt.% DPSQ.  相似文献   

14.
《Organic Electronics》2014,15(4):858-863
The use of appropriate charge carrier transport materials in organic solar cells strongly influences the device performance. In this work, we focused on the molecular electron transport material 1,4,5,8-naphthalene-tetracarboxylic-dianhydride (NTCDA) doped by cesium carbonate (Cs2CO3). We first investigated the electrical properties of such n-type doped material as a function of the doping concentration before using it as electron transport layer (ETL) in polymer solar cells. The doped transparent ETL reduces the series resistance leading to an increased open circuit voltage. A power conversion efficiency of 3.8% was finally achieved in a device with a blend of poly(3-hexylthiophene-2,5-diyl):phenyl-C61-butyric acid methyl ester (P3HT:PCBM) as the active layer and a 5 nm-thick NTCDA:Cs2CO3 film with a molar ratio of 30% as ETL.  相似文献   

15.
The effect of the MoO3–PEDOT:PSS composite layer in the MoO3/Au/MoO3–PEDOT:PSS multilayer electrode on the power conversion efficiency of ITO-free organic solar cells (OSCs) was evaluated. The MoO3 (30 nm)/Au(12 nm)/MoO3–PEDOT:PSS (30 nm)/PEDOT:PSS structure showed ~7% more optical transmittance than the MoO3 (30 nm)/Au (12 nm)/MoO3(30 nm)/PEDOT:PSS structure at 550 nm wavelength. The OSCs using MoO3/Au/MoO3–PEDOT:PSS multilayer electrodes as anodes showed a considerable improvement in power conversion efficiency (PCE), from 1.84% to 2.81%, comparable to ITO based OSCs with PCE of 2.89%. This improvement is attributed to the suppression of MoO3 dissolution by the acidic hole transport layer (HTL) PEDOT:PSS on the MoO3/Au/MoO3–PEDOT:PSS multilayer electrode, resulting in high Jsc, Voc and FF of the OSCs. This composite based multilayer electrode was shown to be a promising replacement in ITO-free flexible optoelectronic devices.  相似文献   

16.
Distinct multi-thermal treatments comprising cycling, aging, and seeding were introduced to prepare very thick bulk heterojunction (BHJ) active layers (ca. 800 nm) of poly(3-hexylthiophene) (P3HT):phenyl-C71-butyric acid methyl ester (PC71BM) photovoltaic cells. To this end, various P3HT48800-based rod-coil block copolymers having the coily blocks of polystyrene (PS), poly(methyl methacrylate) (PMMA), and poly(ethylene glycol) (PEG) were synthesized. The grazing incidence X-ray scattering, field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) analyses proved that the dielectric coily blocks, which were excluded from the P3HT crystalline structure, accumulated on the crystals surface without decreasing the crystal quality and formed hairy crystals. The multi-thermal techniques facilitated stacking of the growth planes in π-π direction for the P3HT crystals, thereby, this dimension was improved from 5 to 27 nm for conventionally prepared BHJs to 53–265 nm for multi-thermally developed ones. The hydrophobic coily blocks were capable of neutralizing the influence of the PCBM molecules presence in the growth environment, which resulted in the larger P3HT crystals in a similar condition. By switching the conventional spin coating approach to the cycling, aging, and seeding methods, the P3HT crystals and the PCBM clusters were gradually coarsened and the respective d-spacings decreased. This trend enhanced the hole mobility (=8.8×10−5 cm2/Vs), electron mobility (=2.5×10−3 cm2/Vs), short circuit current density (Jsc=12.02 mA/cm2), fill factor (FF=69%), and power conversion efficiency (PCE=4.39%) up to the maximum values for seeding approach. Moreover, the higher percentages of face-on orientation were detected in the BHJs with lower d-spacings in the hexyl side chain direction. Hairy P3HT48800-b-PS crystals developed by seeding method possessed the highest face-on orientation (~5.5%).  相似文献   

17.
《Organic Electronics》2014,15(4):913-919
Efficient bulk-heterojunction polymer solar cells based on poly(3-hexylthiophene) (P3HT) blended with a fullerene derivative, [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) were fabricated in inverted configuration by using copper phthalocyanine-3,4′,4′′,4′′′tetra-sulfonated acid tetrasodium salt (TS-CuPc) as the electron collecting layer and MoO3 as hole collecting layer. TS-CuPc is observed to be critical for the device performance, significantly enhancing the Jsc and the PCE compared to devices based on TiOx. The optimal thicknesses of MoO3 and TS-CuPc were 10 nm and 15 nm, respectively. Based on these optimal parameters, the PCE of 3.6% was obtained compared to 3.4% for the reference TiOx/P3HT:PCBM/MoO3/Ag.  相似文献   

18.
A series of solution processed organic solar cells (OSCs) were fabricated with a two-dimensional conjugated small molecule SMPV1 as electron donor and fullerene derivatives PC71BM or ICBA as electron acceptor. The champion power conversion efficiency (PCE) of OSCs arrives to 7.05% for the cells with PC71BM as electron acceptor. A relatively large open circuit voltage (VOC) of 1.15 V is obtained from cells using ICBA as electron acceptor with an acceptable PCE of 2.54%. The fill factor (FF) of OSCs is 72% or 61% for the cells with PC71BM or ICBA as electron acceptor, which is relatively high value for small molecule OSCs. The relatively low performance of OSCs with ICBA as electron acceptor indicates that ICBA cannot play positive role in photoelectric conversion processes, which is very similar to the phenomenon observed from the OSCs with high efficient narrow band gap polymers other than P3HT as electron donor, the underlying reason is still in debate. The SMPV1 has strong self-assemble ability to form an ordered two dimensional lamellar structure, which provides an effective platform to investigate the effect of electron acceptor chemical structure on the performance of OSCs. Experimental results exhibit that ICBA molecules may prefer to vertical cross-intercalation among side chains of SMPV1, PC71BM molecules may have better miscibility with SMPV1 in the active layer. The different donor/acceptor (D/A) intermolecular arrangement strongly influences photon harvesting, exciton dissociation and charge carrier transport, which may provide a new sight on performance improvement of OSCs by adjusting D/A intermolecular arrangements.  相似文献   

19.
Knowledge about the working mechanism of the PbS:P3HT:PCBM [P3HT=poly(3‐hexylthiophene), PCBM=[6,6]‐phenyl‐C61 ‐butyric acid methyl ester] hybrid blend used for efficient near‐infrared photodiodes is obtained from time‐resolved photoluminescence (PL) studies. To understand the role of each component in the heterojunction, the PL dynamics of the ternary (PbS:P3HT:PCBM) blend and the binary (PbS:P3HT, PbS:PCBM and P3HT:PCBM) blends are compared with the PL of the pristine PbS nanocrystals (NCs) and P3HT. In the ternary blend the efficiency of the charge transfer is significantly enhanced compared to the one of PbS:P3HT and PbS:PCBM blends, indicating that both hole and electron transfer from excited NCs to the polymer and fullerene occur. The hole transfer towards the P3HT determines the equilibration of their population in the NCs after the electron transfer towards PCBM, allowing their re‐excitation and new charge transfer process.  相似文献   

20.
We report on studies of poly-(2,5-dihexyloxy-p-phenylenevinylene) (PDHeOPV), a symmetric side-chain polymer, as a potential new donor material for polymer:fullerene blend solar cells. We study the surface morphology of blend films of PDHeOPV with PCBM, the transport properties of the blend films, and the performance of photovoltaic devices made from such blend films, all as a function of PCBM content. In each case, results are compared with those obtained using the asymmetric side chain polymer, poly[2-methoxy-5-(3,7-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV), in order to investigate the influence of polymer side chain symmetry on solar cell performance. AFM images show that large PCBM aggregates appear at lower PCBM content (50 wt.% PCBM) for PDHeOPV:PCBM than for MDMO-PPV:PCBM (67 wt.% PCBM) blend films. Time-of-Flight (ToF) mobility measurements show that charge mobilities depend more weakly on PCBM content in PDHeOPV:PCBM than in MDMO:PPV:PCBM, with the result that at high PCBM content the mobilities in PDHeOPV:PCBM are significantly lower than in MDMO:PPV:PCBM blend films, despite the higher mobilities in pristine PDHeOPV compared to pristine MDMO-PPV. Photovoltaic devices show significantly lower power conversion efficiency (~0.93%) for PDHeOPV:PCBM (80 wt.% PCBM) blend films than for MDMO-PPV:PCBM (2.2% at 80 wt.% PCBM) blends. This is attributed to the relatively poor transport properties of the PDHeOPV:PCBM blend, which limit the optimum thickness of the photoactive layer in PDHeOPV:PCBM blend devices. The behaviour is tentatively attributed to a higher tendency for the symmetric side-chain polymer chains to aggregate, resulting in poorer interaction with the fullerene and poorer network formation for charge transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号