共查询到20条相似文献,搜索用时 15 毫秒
1.
Modifying the organic-metal interface in organic field-effect transistors (OFETs) is a critical means by which to improve device performance; however, to date, all of the interfacial modifying layers utilized in these systems have been closed-shell in nature. Here, we introduce open-shell oxidation-reduction-active (redox-active) macromolecules, namely radical polymers, in order to serve as interfacial modifiers in pentacene-based OFETs. Through careful selection of the chemistry of the specific radical polymer, poly(2,2,6,6-tetramethylpiperidine-1-oxyl methacrylate) (PTMA), the charge transport energy level of the interfacial modifying layer was tuned to provide facile charge injection and extraction between the pentacene active layer and the gold source and drain electrodes of the OFET. The inclusion of this radical polymer interlayer, which was deposited in through straightforward inkjet printing, led to bottom-contact, bottom-gate OFETs with significantly increased mobility and ON/OFF current ratios relative to OFETs without the PTMA interlayer. The underlying mechanism for this improvement in device performance is explained in terms of the charge transport capability at the organic-metal interface and with respect to the pentacene grain growth on the radical polymer. Thus, this effort presents a new, open-shell-based class of materials for interfacial modifying materials, and describes the underlying physics behind the practical operation of these materials. 相似文献
2.
It has been demonstrated that the modification of electrodes with self-assembled monolayers (SAMs) reduces the contact resistance and improves the device performances of organic field-effect transistors (OFETs). However, it has been difficult to judge if the contact resistance was reduced by the change in the electronic properties or by the change in the morphology of the metal–organic interface caused by the SAM modification because they have been difficult to be separately assessed. We have directly investigated the local impedance and the potential difference at the electrode–channel interfaces of the OFETs with and without modification of the electrodes by a pentafluorobenzenethiol SAM using frequency-modulation scanning impedance microscopy (FM-SIM). The potential profile measurement and the FM-SIM measurement at the interface showed that the improvement of the field-effect mobility in the SAM-modified OFET was caused by the reduction of the energy level mismatch, namely, the hole injection barrier at the source–channel interface, presumably with the reduction of the hole trap sites at the source–channel interface. 相似文献
3.
F. Golmar M. Gobbi R. Llopis P. Stoliar F. Casanova L.E. Hueso 《Organic Electronics》2012,13(11):2301-2306
We study micrometer-sized organic field-effect transistors with either Pd or NiFe metallic electrodes. Neither of these materials is commonly used in organic electronics applications, but they could prove to be particularly advantageous in certain niche applications such as organic spintronics. Using organic semiconductors with different carrier transport characteristics as active layer, namely n-type C60 fullerene and p-type Pentacene, we prove that Pd (NiFe) is a very suitable electrode for p- (n-) type semiconductors. In particular, we characterized devices with channel lengths in the order of the micrometer, a distance which has allowed us to evaluate the electronic behavior in a regime where the interfacial problems become predominant and it is possible to reach elevated longitudinal electric fields. Our experimental results agree well with a simple model based on rigid energy levels. 相似文献
4.
《Solid-State Circuits, IEEE Journal of》1976,11(2):313-317
A general theory of the voltage-controlled negative resistance in a field-effect transistor is presented. The prerequisite to the negative resistance is mathematically determined as a relation among the source-gate voltage, the source-drain voltage, and the pinchoff voltage. It is suggested that there will be a variety of circuit configurations with the positive feedback function applied to the gate of the field-effect transistor. Three basic examples of the practical application of the theory are also given. 相似文献
5.
Serafina CotroneMarianna Ambrico Henrik TossM. Daniela Angione Maria MagliuloAntonia Mallardi Magnus BerggrenGerardo Palazzo Gilles HorowitzTeresa Ligonzo Luisa Torsi 《Organic Electronics》2012,13(4):638-644
A totally innovative electrolyte-gated field effect transistor, embedding a phospholipid film at the interface between the organic semiconductor and the gating solution, is described. The electronic properties of OFETs including a phospholipid film are studied in both pure water and in an electrolyte solution and compared to those of an OFET with the organic semiconductor directly in contact with the gating solution. In addition, to investigate the role of the lipid layers in the charge polarization process and quantify the field-effect mobility, impedance spectroscopy was employed. The results indicate that the integration of the biological film minimizes the penetration of ions into the organic semiconductor thus leading to a capacitive operational mode as opposed to an electrochemical one. The OFETs operate at low voltages with a field-effect mobility in the 10−3 cm2 V−1 s−1 range and an on/off current ratio of 103. This achievement opens perspectives to the development of FET biosensors potentially capable to operate in direct contact with physiological fluids. 相似文献
6.
Yong Xu Peter Darmawan Chuan Liu Yun Li Takeo Minari Gerard Ghibaudo Kazuhito Tsukagoshi 《Organic Electronics》2012,13(9):1583-1588
A study of the contact resistance (Rsd) in pentacene-based double-gate transistors is presented. In top-contact transistors, as the negative bias of the additional top-gate bias is increased, Rsd decreases by over five orders of magnitude for small bottom-gate voltages. In bottom-contact transistors, Rsd is reduced by about ten times for all bias values, implying improved charge transport in all operating regimes. The different tunability of Rsd in top/bottom-contact transistors is attributed to different charge injection modulation by the coplanar/staggered top gate. Therefore, double-gate architecture offers a novel and effective approach to limit Rsd and its relevant impacts on organic transistor. 相似文献
7.
To isolate the active layer from air, double organic layer organic field-effect transistors have been fabricated, based on a two-step vacuum-deposition process. Pentacene acted as the active layer, and subsequently, CuPc was deposited above the pentacene and served as a protecting layer for the active layer. Due to the same electrical characteristics but different morphologies, the bilayer structure was effective in decreasing the contamination of impurities and gas, and then improved the device stability in air. 相似文献
8.
High-performance rubrene single-crystal field-effect transistors are developed with binary ionic liquid electrolytes used for gating. Inclusion of small amount of inorganic salts in the ionic liquids enhances the degree of dissociation for the organic ions and accelerates formation of the electric-double-layers in response to the gate voltage. High carrier mobility of 2.9 cm2/Vs is achieved in the rubrene single-crystal transistors with the mixture ionic liquid. In addition to the advantage of the low-voltage operation due to concentrated field in ultra-thin electric-double-layers, drastically increased capacitance at above 100 Hz makes the technique of the ionic liquid gating more attractive for fast-switching devices. 相似文献
9.
Liu Ge Liu Ming Shang Liwei Tu Deyu Liu Xinghua Wang Hong Liu Jiang 《半导体学报》2009,30(9):094006-094006-4
y in air. 相似文献
10.
J.J. Brondijk F. Torricelli E.C.P. Smits P.W.M. Blom D.M. de Leeuw 《Organic Electronics》2012,13(9):1526-1531
The charge injection barriers in organic field-effect transistors (OFETs) seem to be far less critical as compared to organic light-emitting diodes (OLEDs). Counter intuitively, we show that the origin is image-force lowering of the barrier due to the gate bias at the source contact, although the corresponding gate field is perpendicular to the channel current. In coplanar OFETs, injection barriers up to 1 eV can be surmounted by increasing the gate bias, enabling extraction of bulk transport parameters in this regime. For staggered transistors, however, the injection is gate-assisted only until the gate bias is screened by the accumulation channel opposite to the source contact. The gate-assisted injection is supported by two-dimensional numerical charge transport simulations that reproduce the gate-bias dependence of the contact resistance and the typical S-shaped output curves as observed for OFETs with high injection barriers. 相似文献
11.
《Display Technology, Journal of》2005,1(2):289-294
This paper reports a photolithographic process for fabricating organic field-effect transistors which provides two layers of metal with arbitrary via placement, and optionally allows for subtractive lithographic patterning of the transistor active layer. The demonstrated pentacene transistors have a field-effect mobility of 0.1/spl plusmn/0.05 cm/sup 2//(V/spl middot/s). Parylene-C is used both as the gate dielectric and an encapsulation layer which allows for subtractive lithographic patterning. Also demonstrated is a PMOS inverter without level shifting circuitry and level-restoring V/sub High/ and V/sub Low/. This work demonstrates a high definition, multilayer, integrated photolithographic process which creates organic field effect transistors suitable for use in integrated circuit applications such as a display backplanes. 相似文献
12.
《Organic Electronics》2008,9(6):1101-1106
We report on mobilities up to 3.6 cm2/V s in organic field-effect transistors (OFETs) with solution-processed dithiophene- and dibenzo-tetrathiafulvalene (DT- and DB-TTF) single crystals as active materials. In the devices, the channel length varies from 100 μm down to sub 100 nm, and the SiO2 thickness is either 100 nm, 50 nm, or 20 nm. The devices exhibit excellent operation characteristics with an on/off-ratio exceeding 106. Temperature dependent measurements between 50 and 400 K reveal a thermally activated transport with increased activation above 200 K. The mobility exhibits exponential activation with two distinct exponents. 相似文献
13.
采用液晶E7作为栅介质,聚异靛蓝噻吩乙烯噻吩(PII-TVT)作为半导体,利用光刻/蚀刻技术制备了漏极-源极-栅极(D-S-G)共面的有机场效应晶体管器件,并测试了晶体管性能,对液晶作为栅介质应用于有机场效应晶体管进行研究。实验结果表明,器件表现出比较特别的晶体管性能,开关比达到10~3。通过光学显微镜观察发现,施加栅极电压后液晶发生形变,表明栅极电压对电极上的液晶分子的取向排列有较大影响。在施加脉冲栅压时,沟道电流随着脉冲栅压时间的延长而增强。利用液晶分子在电场下发生极化和迟滞作用,可一定程度上模拟突触的刺激时间依赖性。 相似文献
14.
Andreas Ringk W.S. Christian Roelofs Edsger C.P. Smits Cees van der Marel Ingo Salzmann Alfred Neuhold Gerwin H. Gelinck Roland Resel Dago M. de Leeuw Peter Strohriegl 《Organic Electronics》2013,14(5):1297-1304
Within this work we present n-type self-assembled monolayer field-effect transistors (SAMFETs) based on a novel perylene bisimide. The molecule spontaneously forms a covalently fixed monolayer on top of an aluminium oxide dielectric via a phosphonic acid anchor group. Detailed studies revealed an amorphous, two-dimensional semiconducting sheet on top of the dielectric. Reliable transistors with electron mobilities on the order of 10?3 cm2/V s with limited hysteresis were achieved on rigid as well on flexible substrates. Furthermore, a flexible NMOS-bias inverter based on SAMFETs is demonstrated for the first time. 相似文献
15.
We demonstrate high-performance flexible polymer OFETs with P-29-DPP-SVS in various geometries. The mobilities of TG/BC OFETs are approximately 3.48 ± 0.93 cm2/V s on a glass substrate and 2.98 ± 0.19 cm2/V s on a PEN substrate. The flexible P-29-DPP-SVS OFETs exhibit excellent ambient and mechanical stabilities under a continuous bending stress of 1200 times at an R = 8.3 mm. In particular, the variation of μFET, VTh and leakage current was very negligible (below 10%) after continuous bending stress. The BG/TC P-29-DPP-SVS OFETs on a PEN substrate applies to flexible NH3 gas sensors. As the concentration of NH3 increased, the channel resistance of P-29-DPP-SVS OFETs increased approximately 100 times from ∼107 to ∼109 Ω at VSD = −5 V and VGS = −5 V. 相似文献
16.
《Organic Electronics》2003,4(1):33-37
In conventional field-effect transistors, the extracted mobility does not take into account the distribution of charge carriers. However, in disordered organic field-effect transistors, the local charge carrier mobility decreases from the semiconductor/insulator interface into the bulk, due to its dependence on the charge carrier density. It is demonstrated that the conventional field-effect mobility is a good approximation for the local mobility of the charge carriers at the interface. 相似文献
17.
Mihai Irimia-Vladu Nenad Marjanovic Marius Bodea Gerardo Hernandez-Sosa Alberto Montaigne Ramil Reinhard Schwödiauer Siegfried Bauer Niyazi Serdar Sariciftci Frank Nüesch 《Organic Electronics》2009,10(3):408-415
The transfer of benchtop knowledge into large scale industrial production processes represents a challenge in the field of organic electronics. Large scale industrial production of organic electronics is envisioned as roll to roll (R2R) processing which nowadays comprises usually solution-based large area printing steps. The search for a fast and reliable fabrication process able to accommodate the deposition of both insulator and semiconductor layers in a single step is still under way. Here we report on the fabrication of organic field effect transistors comprising only evaporable small molecules. Moreover, both the gate dielectric (melamine) and the semiconductor (C60) are deposited in successive steps without breaking the vacuum in the evaporation chamber. The material characteristics of evaporated melamine thin films as well as their dielectric properties are investigated, suggesting the applicability of vacuum processed melamine for gate dielectric layer in OFETs. The transistor fabrication and its transfer and output characteristics are presented along with observations that lead to the fabrication of stable and virtually hysteresis-free transistors. The extremely low price of precursor materials and the ease of fabrication recommend the evaporation processes as alternative methods for a large scale, R2R production of organic field effect transistors. 相似文献
18.
It is well known that contact resistance Rc limits the performance of organic field-effect transistors (OFETs) that have high field-effect mobilities (μFET ≳ 0.3 cm2 V−1 s−1) and short channel lengths (Lch ≲ 30 μm). The usual transfer-line method (TLM) to analyze Rc calls for extrapolation of total resistance to zero Lch at constant drain and gate voltages. This requires an unrealistic assumption that Rc does not vary with source−drain current Isd (nor with channel carrier density σ). Here we describe a self-consistent TLM analysis that instead imposes the condition of constant Isd and σ. The results explicitly reveal the dependence of Rc on Isd and σ. We further describe how this Rc(Isd, σ) surface can be modelled to yield the specific contact resistivity ρc of the metal/organic semiconductor (OSC) interface, a key parameter that has so far been neglected in OFETs. We illustrate the application of these analyses to high-performance staggered top-gate bottom-contact poly(2,5-bis(alkyl)-1,4-dioxopyrrolo [3,4-c]pyrrole-3,6-diyl-terthiophene-2,5″-diyl) (DPPT2-T) OFETs fabricated on bottom Au source–drain electrode arrays, with high contact-corrected μFET of 0.5 cm2 V−1 s−1. We show that when these electrodes are modified to impose weak, and then strong hole-doping of the DPPT2-T interface, Rc diminishes and its dispersion, i.e. dependence on Isd and σ, weakens. The ultimate ρc attained for the strongly hole-doped contact is ca. 1 Ω cm2, broadly independent of Isd and σ, which we propose is a hallmark of a true metal/OSC ohmic contact. For comparison, the bare Au/DPPT2-T contact gives ρc of the order of 10 Ω cm2 with a marked σ dependence. The lowest ρc reached here shortens the current transfer length down to ca. 5 μm, enabling short electrode lengths to be advantageously employed in technology. 相似文献
19.
W.S. Christian Roelofs Weiwei Li René A.J. Janssen Dago M. de Leeuw Martijn Kemerink 《Organic Electronics》2014,15(11):2855-2861
With the increasing performance of organic semiconductors, contact resistances become an almost fundamental problem, obstructing the accurate measurement of charge carrier mobilities. Here, a generally applicable method is presented to determine the true charge carrier mobility in an organic field-effect transistor (OFET). The method uses two additional finger-shaped gates that capacitively generate and probe an alternating current in the OFET channel. The time lag between drive and probe can directly be related to the mobility, as is shown experimentally and numerically. As the scheme does not require the injection or uptake of charges it is fundamentally insensitive to contact resistances. Particularly for ambipolar materials the true mobilities are found to be substantially larger than determined by conventional (direct current) schemes. 相似文献