首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Green electrophosphorescent inverted top-emitting organic light-emitting diodes with a Ag/1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile (HAT-CN) anode are demonstrated. A high current efficacy of 124.7 cd/A is achieved at a luminance of 100 cd/m2 when an optical outcoupling layer of N,N′-di-[(1-naphthyl)-N,N′-diphenyl]-1,1′-biphenyl-4,4′-diamine (α-NPD) is deposited on the anode. The devices have a low turn-on voltage of 3.0 V and exhibit low current efficacy roll-off through luminance values up to 10,000 cd/m2. The angle dependent spectra show deviation from Lambertian emission and color change with viewing angle. Hole-dominated devices with Ag/HAT-CN electrodes show current densities up to three orders of magnitude higher than devices without HAT-CN.  相似文献   

2.
The device characteristics of blue phosphorescent organic light-emitting diodes (PHOLEDs) with mixed host structure were investigated by changing the combination and the composition of host materials in emissive layer. The distributed recombination zone and balanced charge carrier injection within emissive layer were achieved through mixed host optimization with a hole transport-type and an electron transport-type host materials, therefore the device performances were greatly enhanced, with external quantum and power efficiencies of 21.8% and 53 lm/W. Moreover, mixed host blue PHOLEDs exhibited a extremely low stable efficiency roll-off with quantum efficiencies of 20.3% and 18.6% at a luminance of 1000 and 10,000 cd/m2.  相似文献   

3.
We report efficient and bright organic light-emitting devices operated by capacitive energy coupling. In this approach, the organic layers are enclosed between sputter-deposited hafnium dioxide layers to prevent charge carrier injection. When a sinusoidal voltage signal is applied to the electrodes, the devices emit bright green light whereas no detectable emission is generated upon application of a constant voltage. The efficiency of the process depends heavily on the frequency of the applied voltage signal. By optimizing the driving scheme, a record luminous efficacy for AC driven OLEDs of 2.7 lm/W at 500 cd/m2 is achieved.  相似文献   

4.
We report on the development and detailed investigation of highly efficient pin phosphorescent organic light-emitting diodes (PhOLEDs) using 4,4′-bis(carbazol-9-yl)-biphenyl (CBP) as a single organic semiconductor matrix. Following optimization of doping concentration of both the phosphorescent emitter molecule and of the p- and n-type dopants, an external quantum efficiency (EQE) of 15% and a power efficiency (PE) of 28 lm/W are realized at a luminance of 1000 cd/m2. These values are comparable to the state-of-the-art for conventional complex multilayered PhOLEDs. By analyzing the device characteristics (i.e. electroluminescence spectra, the current density–voltage behavior of single carrier devices, the transient electroluminescent decay, and the impedance spectroscopy response), we find that the device performance is closely linked to the charge carrier balance in the device, which in turn is governed by the interplay of the conductivities of the doped layers and the transport of each charge carrier species within the emitting layer.  相似文献   

5.
Wet-process enables flexible, large area-size organic devices to be fabricated cost-effectively via roll-to-roll manufacturing. However, wet-processed devices often show comparatively poor performance due to the lack of solution-process feasible functional materials that exhibit robust mechanical properties. We demonstrate here a cross-linkable material, 3,6-bis(4-vinylphenyl)-9-ethylcarbazole (VPEC), to facilitate the injection of hole and meanwhile effectively confine electron to realize, for examples, high efficiency organic light-emitting diodes, especially at high luminance. The VPEC shows a hole mobility of 1 × 10−4 cm2 V−1 s−1 and a triplet energy of 2.88 eV. Most importantly, the VPEC not only works for devices containing low band-gap red or green emitters, but also for the counterpart with high band-gap blue emitter. With the electron confining hole transporting material, the power efficiency of a studied red device, at 1,000 cd m−2 for example, is increased from 8.5 to 13.5 lm W−1, an increment of 59%, and the maximum luminance enhanced from 13,000 to 19,000 cd m−2, an increment of 46%. For a high triplet energy blue emitter containing device, it is increased from 6.9 to 8.9 lm W−1, an increment of 29%, and the maximum luminance enhanced from 9,000 to 11,000 cd m−2, an increment of 22%.  相似文献   

6.
《Organic Electronics》2008,9(5):834-838
Novel light-emitting transistors (OLETs) with the split-gate electrode divided into two parts for independent control of electron and hole were devised, in addition to the PN-hetero-boundary combined with the electron and hole transport materials along carrier channels. With this device structure, the on/off ratio of 1000 or more in the current and the luminance were achieved. Which is 100 times or more large compared with earlier reported single-gate type PN-hetero-boundary light-emitting transistor [N. Suganuma, N. Shimoji, Y. Oku, K. Matsushige, Novel organic light-emitting transistors with PN-heteroboundary carrier recombination sites fabricated by lift-off patterning of organic semiconductor thin films, J. Mater. Res. 22 (2007) 2982; N. Suganuma, N. Shimoji, PCT Int. Appl. WO2007/010925; N. Suganuma, PCT Int. Appl. WO2007/026703]. In this device, the luminance of about 100 cd/m2 was obtained at 15 V in the source–source voltage (also known as the source–drain voltage) with the turn-on voltage of less than 10 V. The horizontal PN-hetero-boundary structure was implemented for the first time by using the photolithographic patterning of the organic semiconductor thin-films. This patterning technique can be applied in fabricating not only organic light-emitting transistors reported in this article but also organic integrated circuit or organic display.  相似文献   

7.
A highly fluorescent an ionic fluorene derivative 1 was synthesized and its photophysical, electrochemical and electroluminescence characteristics were investigated. Deep blue emissions were observed for compound 1 in solid as well as in dilute solutions. The synthesized compound shows high fluorescence quantum yield around 77% indicates that compound 1 can perform its role as efficient ionic emitter in LEC devices. Light-emitting electrochemical cell (LEC) devices were fabricated incorporating compound 1 without (device I) and with (device II) ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM·PF6). Devices I and II exhibited blue electroluminescence maximum centered at 455 and 454 nm with CIE coordinates of (0.15, 0.21) and (0.16, 0.22), respectively. Maximum luminance and current efficiency of 1105 cd m−2 and 0.14 cd A−1 respectively, has achieved for device I while that of device II resulted in 1247 cd m−2 and 0.14 cd A−1 respectively.  相似文献   

8.
We report a unique non-radiative p-n-p junction structure to provide high current conduction with high mobility in organic semiconductor devices. The current conduction was improved by increasing p-n junctions made with intrinsic p-type hole transport layer and n-type electron transport layer. The excellent hole mobility of 5.3 × 10?1 cm2/V s in this p-n-p device configuration is measured by the space charge limited current method with an electric field of 0.3 MV/cm. Enhanced current conduction of 248% at 4.0 V was observed in fluorescent blue organic light-emitting diodes with introduction of non-radiative p-n-p-n-p junction interfaces. Thereupon, the power efficiency at 1000 cd/m2 was improved by 22% and the driving voltage also was reduced by 17%, compared to that of no interface device. Such high current conduction with high mobility is attributed to the carrier recombination at p-n-p interfaces through coulombic interaction. This non-radiative p-n-p junction structure suggested in this report can be very useful for many practical organic semiconductor device applications.  相似文献   

9.
《Organic Electronics》2007,8(6):641-647
We report on the overall improvement of a single layer organic light-emitting diode device based on poly{[3-hethylthiophene]-co-3-[2-(p-cyano-phenoxy)ethyl]thiophene} or namely PTOPhCN. This polymer was recently developed by adding a cyano group as a side-chain substituent of the thiophenic backbone onto the main polymer chain and showed promising results for light-emitting diode devices. Using an improved device layout, bright red electroluminescence was obtained at 4 V and showed a luminance of about 400 cd/m2 at 8 V with current densities in the order of 6000 A/m2.  相似文献   

10.
We report efficient red, orange, green and blue organic–inorganic light emitting devices using light emitting polymers and polyethylenimine ethoxylated (PEIE) interlayer with the respective luminance efficiency of 1.3, 2.7, 10 and 4.1 cd A−1, which is comparable to that of the analogous conventional devices using a low work-function metal cathode. This is enabled by the enhanced electron injection due to the effective reduction of the ZnO work-function by PEIE, as well as hole/exciton-blocking function of PEIE layer. Due to the benign compatibility between PEIE and the neighboring organic layer, the novel phosphorescent organic–inorganic devices using solution-processed small molecule emissive layer show the maximum luminance efficiency of 87.6 cd A−1 and external quantum efficiency of 20.9% at 1000 cd m−2.  相似文献   

11.
A hybrid white organic light-emitting diode (WOLED) with an emission layer (EML) structure composed of red phosphorescent EML/green phosphorescent EML/spacer/blue fluorescent EML was demonstrated. This hybrid WOLED shows high efficiency, stable spectral emission and low efficiency roll-off at high luminance. We have attributed the significant improvement to the wide distribution of excitons and the effective control of charge carriers in EMLs by using mixed 4,4′,4″-tri(9-carbazoyl) triphenylamine (TCTA) and bis[2-(2-hydroxyphenyl)-pyridine] beryllium (Bepp2) as the host of phosphorescent EMLs as well as the spacer. The bipolar mixed TCTA:Bepp2, which was proved to be a charge carrier switch by regulating the distribution of charge carriers and then the exciton recombination zone, plays an important role in improving the efficiency, stabilizing the spectrum and reducing the efficiency roll-off at high luminous. The hybrid WOLED exhibits a current efficiency of 30.2 cd/A, a power efficiency of 32.0 lm/W and an external quantum efficiency of 13.4% at a luminance of 100 cd/m2, and keeps a current efficiency of 30.8 cd/A, a power efficiency of 27.1 lm/W and an external quantum efficiency of 13.7% at a 1000 cd/m2. The Commission Internationale de l’Eclairage (CIE) coordinates of (0.43, 0.43) and the color rendering index (CRI) of 89 remain nearly unchanged in the whole range of luminance.  相似文献   

12.
《Organic Electronics》2008,9(6):1061-1068
We have investigated a series of oligothiophenes in organic thin film transistors (TFTs), with special emphasis on their thin film morphology related to device performance and application requirements. The transistor performance was studied for devices fabricated at different substrate temperatures during semiconductor deposition (ranging from room temperature to 120 °C). A significant dependence of thin film morphology on the substrate temperature was observed, whereas the charge carrier mobility in devices occurs almost unaffected. We have tested the long-term stability of 78 transistor devices (shelf-life in ambient conditions) over a period up to 100 days. Only a small degradation in mobility by less than one order of magnitude was observed. Investigations at elevated temperatures during TFT operation (room temperature to 105 °C) show that devices with α,α′-hexylsexithiophene (Hex-6T-Hex) degrade in their charge carrier mobility by a factor of 8, but completely recover to their initial value of 0.7 cm2/Vs after a short period of storage at room temperature in ambient conditions.  相似文献   

13.
We report efficient blue electrophosphorescent polymer light emitting devices with polyfluorene (PFO) as the host and iridium bis[2-(4,6-difluorophenyl)-pyridinato-N,C2] picolinate (FIrpic) as the dopant. Despite the low-lying triplet energy level of the polyfluorene polymer host, phosphorescent quenching can be suppressed by using poly(N-vinylcarbazole) (PVK) as anode buffer layer, resulting in a high luminous efficiency of 26.4 cd A?1, which is one of the best results in the literature based on conjugated polymer reported to date. The reduced phosphorescent quenching is found to be associated with the exciton formation and charge carrier recombination within the PVK layer and the PVK/PFO interface due to the accumulation of holes. As compared with the devices based on non-conjugated host polymer PVK, the devices based on PFO showed a lower turn-on voltage (3.6 V vs. 4.4 V) and higher power efficiency (17 lm W?1 vs. 8.3 lm W?1) due to the higher mobility of PFO. When doubly doped with a newly synthesized yellow-emitting metallophosphor, white polymer light-emitting devices with superior device performance (a peak device efficiency of 40.9 cd A?1, a CIE coordinates of (0.32, 0.48), and a power efficiency of 31.4 lm W?1) was achieved. These findings can broaden our selection in polymer hosts for highly efficient phosphorescent blue emitting devices and can find potential applications in full color displays and solid-state lighting applications in the future.  相似文献   

14.
We fabricated an 8 × 8 cross-bar array-type organic nonvolatile memory devices on twistable poly(ethylene terephthalate) (PET) substrate. A composite of polyimide (PI) and 6-phenyl-C61 butyric acid methyl ester (PCBM) was used as the active material for the memory devices. The organic memory devices showed a high ON/OFF current ratio, reproducibility with good endurance cycle, and stability with long retention time over 5 × 104 s on the flat substrate. The device performance remained well under the twisted condition with a twist angle up to ~30°. The twistable organic memory device has a potential to be utilized in more complex flexible organic device configurations.  相似文献   

15.
《Microelectronics Journal》2007,38(6-7):686-689
In this work, the electrical and optical characteristics of top-emitting organic light-emitting device (TEOLED) using metal Ag as anode with different thicknesses have been investigated. The emission peak of fabricated TEOLED is 512 nm for a full-width at half-maximum (FWHM) of 48 nm in forward direction. The TEOLED turns on at 3 V with luminance of 2.38 cd/m2 and reaches 16,300 cd/m2 at 9 V. The maximum of current efficiency is 5.2 cd/A at 7 V, corresponding to the external quantum efficiency of 1.72%.  相似文献   

16.
Using a 4,4′,4′′-tris(N-carbazolyl)-triphenylamine (TCTA) small molecule interlayer, we have fabricated efficient green phosphorescent organic light emitting devices by solution process. Significantly a low driving voltage of 3.0 V to reach a luminance of 1000 cd/m2 is reported in this device. The maximum current and power efficiency values of 27.2 cd/A and 17.8 lm/W with TCTA interlayer (thickness 30 nm) and 33.7 cd/A and 19.6 lm/W with 40 nm thick interlayer are demonstrated, respectively. Results reveal a way to fabricate the phosphorescent organic light emitting device using TCTA small molecule interlayer by solution process, promising for efficient and simple manufacturing.  相似文献   

17.
The color stability of all-phosphor white organic light-emitting diodes (WOLEDs) is crucial and remains a challenge that must be overcome before the wide application of phosphor WOLEDs technology. Besides, color stable all-phosphor WOLEDs should also offer high color rendering index (CRI) and ideal correlated color temperature (CCT) simultaneously to make the technology competitive against other alternative technologies such as inorganic LEDs. In this work, we demonstrate a series of color stable all-phosphor WOLEDs with two emitters (blue and yellow), three emitters (blue, green/red, and yellow) and four emitters (blue, green, yellow and red) by introducing tris (phenylpyrazole) Iridium [Ir(ppz)3] as interlayer. The results show that appropriate thickness of Ir(ppz)3 interlayer not only can control exciton distribution in the emission zone, but also can improve the spectra stability. In particular, one efficient four-color device with double-interlayer yields fairly high CRI of 92 and 90, ideal CCT of 3703 K and 3962 K at illumination-relevant luminance of 100 cd m–2 and 1000 cd m–2, respectively, which is very appropriate to indoor lighting application. By further employing appropriate hosts to regulate the carrier injection, ultrahigh stable four-color devices with applicable CRI are finally achieved.  相似文献   

18.
The flexible organic ferroelectric nonvolatile memory thin film transistors (OFMTs) were fabricated on polydimethylsiloxane (PDMS) elastomer substrates, in which an organic ferroelectric poly(vinylidene-trifluoroethylene) and an organic semiconducting poly(9,9-dioctylfluorene-co-bithiophene) layers were used as gate insulator and active channel, respectively. The carrier mobility, on/off ratio, and subthreshold swing of the OFMTs fabricated on PDMS showed 5 × 10−2 cm2 V−1 s−1, 7.5 × 103, and 2.5 V/decade, respectively. These obtained values did not markedly change when the substrate was bent with a radius of curvature of 0.6 cm. The memory on/off ratio was initially obtained to be 1.5 × 103 and maintained to be 20 even after a lapse of 2000 s. The fabricated OFMTs exhibited sufficiently encouraging device characteristics even on the PDMS elastomer to realize mechanically stretchable nonvolatile memory devices.  相似文献   

19.
We demonstrated an organic/inorganic multi-barrier and encapsulation for flexible OLED devices. The multi-barrier consisted of a silica nanoparticle-embedded hybrid nanocomposite, in short, S-H nanocomposite, and MgO, which were used as organic and inorganic materials, respectively. The S-H nanocomposite was spin-coated followed by UV curing. The thickness of the S-H nanocomposite was 200 nm, and 40 nm of MgO was deposited by atomic layer deposition (ALD) using Mg(CpEt)2 and H2O at 70 °C. The results of a Ca test showed that the 4.5 dyads of the MgO/S-H nanocomposite had a low water vapor transmission rate (WVTR) of 4.33 × 10?6 g/m2/day and an optical transmittance of 84%. The normalized luminance degradation of the thin film encapsulated OLED was also identical to that of glass-lid encapsulation after 1000 h of the real operation time. We proposed low temperature ALD as a deposition method to create relatively thin film for OLED passivation without degradation, such as creation of dark spots. The results confirmed that it may be feasible for our multi-barrier to passivate flexible OLEDs devices.  相似文献   

20.
High-performance tandem organic light-emitting diodes (OLEDs) employing a buffer-modified C60/pentacene organic semiconductor heterojunction (OHJ) as a charge generation layer (CGL) are demonstrated. The unique cooperation of charge generation, transport, and extraction processes occurred in the OHJ-based CGL remarkably reduces the operational voltage. As a result, an approximately twofold enhancement in power efficiency (21.9 lm W?1 VS 10.1 lm W?1) can be achieved that has previously been suggested to be difficult for tandem OLEDs. When the pentacene is replaced by zinc phthalocyanine (ZnPc), copper phthalocyanine (CuPc), or phthalocyanine (H2Pc), a similar power efficiency improvement can be also achieved. The novel design concept of the buffer-modified OHJ-based CGL is superior to that of the conventional CGLs. The investigations on the operational mechanism are performed, from which it is found that the mobile charge carriers firstly are needed to be accumulated at both sides of the heterojunction interface and then transport along the two organic semiconductors in terms of their good carrier transport characteristics under an external electrical field, and finally inject into the corresponding electroluminescent (EL) units by the interfacial layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号