首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Preparation of Pb(Zr,Ti)O3 (PZT) films on single crystalline STO(0 0 1), LAO(0 0 1) and MgO(0 0 1) substrates was investigated by a coating photolysis process using excimer laser. The effects of the substrate on the product films were examined by FT-IR, UV, XRD (theta–2theta, pole-figure analysis). In the case of using STO and LAO substrates, c-axis oriented films were successfully obtained by an ArF laser irradiation without heat treatment. Crystallinity of the PZT films prepared by a coating photolysis was found to strongly depend on the substrate used compared to conventional thermal process. Using XRD pole-figure analysis for the PZT films on STO substrates, it was found that the films were highly in-plane aligned. The formation mechanisms by a coating photolysis process are also discussed by a photothermal reaction due to both substrate materials and MO starting materials.  相似文献   

2.
《Applied Superconductivity》1996,4(10-11):429-434
A coating system for the deposition of in-plane oriented yttria-stabilized zirconia (YSZ) template films on 1 cm wide flexible metal substrates is presented. In static mode, the system is capable of producing high quality template films on 20 cm substrate lengths. In a continuous coating mode, the system is capable of producing good quality template films on 1.1 m substrate lengths. Superconducting YBa2Cu3O7−δ (YBCO) films subsequently deposited onto these template films have demonstrated critical currents (Ic) of 200 A (1.5 cm length), 70 A (12 cm length) and 4 A (1 m length).  相似文献   

3.
Single-crystalline nonpolar GaN epitaxial films have been successfully grown on r-plane sapphire (Al2O3) substrates by pulsed laser deposition (PLD) with an in-plane epitaxial relationship of GaN[1-100]//Al2O3[11-20]. The properties of the ~500 nm-thick nonpolar GaN epitaxial films grown at temperatures ranging from 450 to 880 °C are studied in detail. It is revealed that the surface morphology, the crystalline quality, and the interfacial property of as-grown ~500 nm-thick nonpolar GaN epitaxial films are firstly improved and then decreased with the growth temperature changing from 450 to 880 °C. It shows an optimized result at the growth temperature of 850 °C, and the ~500 nm-thick nonpolar GaN epitaxial films grown at 850 °C show very smooth surface with a root-mean-square surface roughness of 5.5 nm and the best crystalline quality with the full-width at half-maximum values of X-ray rocking curves for GaN(11-20) and GaN(10-11) of 0.8° and 0.9°, respectively. Additionally, there is a 1.7 nm-thick interfacial layer existing between GaN epitaxial films and r-plane sapphire substrates. This work offers an effective approach for achieving single-crystalline nonpolar GaN epitaxial films for the fabrication of nonpolar GaN-based devices.  相似文献   

4.
Antimony sulfide films have been deposited by pulse electrodeposition on Fluorine doped SnO2 coated glass substrates from aqueous solutions containing SbCl3 and Na2S2O3. The crystalline structure of the films was characterized by X-ray diffraction, Raman spectroscopy and TEM analysis. The deposited films were amorphous and upon annealing in nitrogen/sulfur atmosphere at 250 °C for 30 min, the films started to become crystalline with X-ray diffraction pattern matching that of stibnite, Sb2S3, (JCPDS 6-0474). AFM images revealed that Sb2S3 films have uniformly distributed grains on the surface and the grain agglomeration occurs with annealing. The optical band gap calculated from the transmittance and the reflectance studies were 2.2 and 1.65 eV for as deposited and 300 °C annealed films, respectively. The annealed films were photosensitive and exhibited photo-to-dark current ratio of two orders of magnitude at 1 kW/m2 tungsten halogen radiation.  相似文献   

5.
《Applied Superconductivity》1996,4(10-11):447-454
A modified bias sputtering technique has been proposed to grow in-plane textured yttria-stabilized zirconia buffer layers on polycrystalline metallic substrates for deposition of YBa2Cu3Oy films. The principle of developing an in-plane texturing by this technique is basically the same as that of ion beam assisted deposition; an in-plane texturing occurs by off-normal ion beam bombardment because of the higher sputtering yields of all orientations other than the channelling direction. In our process, however, a flux of energetic particles impinging on the growing film is generated using specially devised negatively biased electrodes installed in a magnetron sputtering system instead of a separate ion-source in IBAD. So far an X-ray phi-scan width of 18° was attained for YSZ films on Hastelloy tapes. Epitaxial YBCO films grown on these buffer layers using pulsed laser deposition showed the Jc’s exceeding 105 A cm−2 (77 K, 0 T). In this paper, we present variation of the bias sputtering technique also used to obtain the textured films on large area substrates. Although the proposed process offers a very convenient method to grow textured films, more efforts must be made to increase growth rates of the films (currently ∽0.1 nm s−1) for large-scale applications of YBCO films.  相似文献   

6.
Tin oxide (SnO2) thin films were deposited on glass substrates by thermal evaporation at different substrate temperatures. Increasing substrate temperature (Ts) from 250 to 450 °C reduced resistivity of SnO2 thin films from 18×10−4 to 4×10−4 Ω ▒cm. Further increase of temperature up to 550 °C had no effect on the resistivity. For films prepared at 450 °C, high transparency (91.5%) over the visible wavelength region of spectrum was obtained. Refractive index and porosity of the layers were also calculated. A direct band gap at different substrate temperatures is in the range of 3.55−3.77 eV. X-ray diffraction (XRD) results suggested that all films were amorphous in structure at lower substrate temperatures, while crystalline SnO2 films were obtained at higher temperatures. Scanning electron microscopy images showed that the grain size and crystallinity of films depend on the substrate temperature. SnO2 films prepared at 550 °C have a very smooth surface with an RMS roughness of 0.38 nm.  相似文献   

7.
Thin amorphous nanostructured CdS films were photochemically obtained via direct UV radiation (λ=254 nm) of complex Cd[(CH3)2CHCH2CH2OCS2]2 on Si(1 0 0) and ITO-covered glass substrate by spin coating. Thin cadmium xanthate complex films’ UV photolysis results in loss of all ligands from the coordination sphere. X-ray photoelectron spectra for as-deposited CdS thin films show the most representative signals of Cd 3d5/2 located at 405 eV, Cd 3d3/2 located at 412 eV and a small signal S 2p located at 162 eV. The surface morphology of the films was examined via atomic force microscopy. This can be described as a fibrous-type surface without structural order, which is characteristic of an amorphous deposit. The optical band gap value was 2.85 and 3.15±0.1 eV.  相似文献   

8.
Gallium (Ga)-doped zinc oxide (ZnO:Ga) transparent conductive films were deposited on glass substrates by DC reactive magnetron sputtering. Effects of deposition pressure on the structural, electrical and optical properties of ZnO:Ga films were investigated. X-ray diffraction (XRD) studies show that the films are highly oriented with their crystallographic c-axis perpendicular to the substrate almost independent of the deposition pressure. The morphology of the film is sensitive to the deposition pressure. The transmittance of the ZnO:Ga thin films is over 90% in the visible range and the lowest resistivity of ZnO:Ga films is 4.48×10−4 Ω cm.  相似文献   

9.
The effect of laser energy density on the crystallization of hydrogenated amorphous silicon (a-Si:H) thin films was studied theoretically and experimentally. The thin films were irritated with a frequency-doubled (λ=532 nm) Nd:YAG pulsed nanosecond laser. An effective finite element model was built to predict the melting threshold and the optimized laser energy density for crystallization of intrinsic amorphous silicon. Simulation analysis revealed variations in the temperature distribution with time and melting depth. The highest crystalline fraction measured by Raman spectroscopy (84.5%) agrees well with the optimized laser energy density (1000 mJ/cm2) in the transient-state simulation. The surface morphology of the thin films observed by optical microscopy is in fairly good agreement with the temperature distribution in the steady-state simulation.  相似文献   

10.
In this report, we explore the optoelectronic properties of a low band-gap copolymer based on the alternation of electron rich (thiophene and thienothiophene units) and electron deficient units (pyridal[2,1,3]thiadiazole (Py)). Initial density functional theory calculations point out the interest of using the Py unit to optimize the polymer frontier orbital energy levels. A high molecular weight (Mn = 49 kg/mol) solution-processable copolymer, based on Py, thiophene and thienothiophene units, has been synthesized successfully. From cyclic-voltammetry and UV–visible absorption measurements a relatively deep HOMO level (−5.1 eV) and an optical band-gap (1.48 eV) have been estimated. Charge transport both in horizontal and vertical directions were extracted from field-effect transistors and space charge limited current diodes, respectively, and led to a relatively high in-plane hole mobility in pure polymer films (0.7 × 10−2 cm2 V−1 s−1). GIWAXS results showed almost identical in-plane lamellar morphologies, with similar average size and orientation of the polymer crystalline domains in both, pure polymer films and polymer:fullerene blends. Also, the gate-voltage dependence of the field-effect mobility revealed that the energy disorder in the polymer domains was not altered by the introduction of fullerenes. The nevertheless significantly higher out-of-plane hole mobility in blends, in comparison to pure polymer films, was attributed to the minor amorphous polymer phase, presumably localized close to the donor/acceptor interface, whose signature was observed by UV–vis absorption. Promising photovoltaic performances could be achieved in a standard device configuration. The corresponding power conversion efficiency of 4.5% is above the value achieved previously with a comparable polymer using benzo [2,1,3]thiadiazole instead of Py as acceptor unit.  相似文献   

11.
《Organic Electronics》2008,9(3):385-395
Oriented growth of polycrystalline rubrene thin film on oriented pentacene buffer layer was investigated. The oriented pentacene buffer layer was created by thermal evaporation of pentacene on a rubbed polyvinylalcohol (PVA) surface. The pentacene layer in turn induced the oriented growth of rubrene crystals upon thermal deposition. The structures of successive layers were characterized by using grazing incidence X-ray diffraction (GIXD) and atomic force microscopy. Highly oriented rubrene crystallites with the a-axis aligning along the surface normal and the (0 0 2) plane preferentially oriented 45° away from the rubbing direction were found. In contrast, the rubrene thin film deposited on PVA or rubbed-PVA substrate without a pentacene buffer layer only gave amorphous phases. With the aligned pentacene/rubrene film as the active layer of organic field-effect transistor, anisotropic mobilities were observed. The highest field-effect mobility (0.105 cm2/V s) was observed along the direction 45° away from the rubbing direction and is ∼4 times higher than that for similar device prepared on unrubbed PVA. The direction was consistent with the GIXD observation that a large number of rubrene crystallites are having their [0 0 2] direction aligning in this direction. A favourable C–H⋯π interaction between an oriented pentacene layer and the rubrene layer on the control of molecular orientation in the conduction channel of the OFET is suggested.  相似文献   

12.
Thin films of alumina (Al2O3) were deposited over Si 〈1 0 0〉 substrates at room temperature at an oxygen gas pressure of 0.03 Pa and sputtering power of 60 W using DC reactive magnetron sputtering. The composition of the as-deposited film was analyzed by X-ray photoelectron spectroscopy and the O/Al atomic ratio was found to be 1.72. The films were then annealed in vacuum to 350, 550 and 750 °C and X-ray diffraction results revealed that both as-deposited and post deposition annealed films were amorphous. The surface morphology and topography of the films was studied using scanning electron microscopy and atomic force microscopy, respectively. A progressive decrease in the root mean square (RMS) roughness of the films from 1.53 nm to 0.7 nm was observed with increase in the annealing temperature. Al–Al2O3–Al thin film capacitors were then fabricated on p-type Si 〈1 0 0〉 substrate to study the effect of temperature and frequency on the dielectric property of the films and the results are discussed.  相似文献   

13.
We report a study on the fabrication and characterization of ultraviolet photodetectors based on N-doped ZnO films. Highly oriented N-doped ZnO films with 10 at.% N doping are deposited using spray pyrolysis technique onto glass substrates. The photoconductive UV detector based on N-doped ZnO thin films, having a metal–semiconductor–metal (MSM) configuration are fabricated by using Al as a contact metal. IV characteristic under dark and UV illumination, spectral and transient response of ZnO and N-doped ZnO photodetector are studied. The photocurrent increases linearly with incident power density by more than two orders of magnitude. The photoresponsivity (580 A/W at 365 nm with 5 V bias, light power density 2 μW/cm2) is much higher in the ultraviolet region than in the visible.  相似文献   

14.
In the paper, SnOx thin films were deposited by reactive magnetron sputtering from a tin target in O2 containing working gas. The evolution from Sn-containing SnO to tetravalent SnO2 films was investigated. The films could be classified into three groups according to their optical band gaps, which are Eg<2.5 eV, Eg=3.0–3.3 eV and Eg>3.7 eV. The electric measurements show that high conductivity can be obtained much easier in SnO2 than in SnO films. A high electron mobility of 15.7 cm2 V−1 s−1, a carrier concentration of 1.43×1020 cm−3 and a resistivity of 2.8×103 Ω cm have been achieved in amorphous SnO2 films. Films with the optical band gap of 3.0–3.3 eV remain amorphous though the substrate temperature is as high as 300 °C, which implies that °btaining high mobility in p-type SnO is more challenging in contrast to n-type SnO2 films.  相似文献   

15.
We investigate the interaction mechanisms at metal–organic and organic–organic interfaces in highly-ordered ultra-thin layers of the dye molecules 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) and tin(II)-phthalocyanine (SnPc) on single crystalline noble metals. The ultra-thin films are characterized by means of in situ differential reflectance spectroscopy (DRS), followed by an extraction of the optical functions by application of a numerical algorithm. For the first time, DRS data of PTCDA and SnPc films on Ag(1 1 1) are presented. We found that for the contact layers of PTCDA and SnPc the well-known covalent interaction between adsorbate and substrate is manifested in broad and structureless absorption spectra. Surprisingly, the optical spectra of the respective first monolayers on Ag(1 1 1) are almost identical despite of the rather different electronic structure of the free molecules. The special character of the optical spectra is emphasized by a comparison with PTCDA and SnPc monolayers on Au(1 1 1) where the electronic interaction at the metal–organic interface is much weaker. Quite differently from the contact layer, the second layer of the same molecule on Ag(1 1 1) clearly shows monomeric behavior which can only be observed if the electronic and optical coupling with the surrounding molecules and the substrate is faint. However, a very weak out-of-plane electronic interaction remains as concluded from the comparison with the spectra obtained on inert mica substrates. We also present structural data acquired with low-energy electron diffraction (LEED) and scanning tunneling microscopy (STM) of SnPc on Au(1 1 1).  相似文献   

16.
Metal-coordinated yellow curcumin was extracted from green natural sources and sublimated in vacuum to prepare thin films on p-Si and glass substrates for dielectric and optical investigations. The synthesised curcumin complexed with the metals boron, iron, and copper powders were crystalline while the prepared films were amorphous. The optical absorption spectrum of the prepared films showed similar two absorption band structure in the visible range. The onset energy of the main optical absorption band of the film was determined using the Tauc technique. The dielectric properties of this material were systematically studied for future applications in metal–insulator–semiconductor MIS field of applications. The complex dielectric properties were studied in the frequency range of 1–1000 kHz and was analysed. The important find is a large optoelectronic sensitivity so that the integral optical responsivity (S1) reaches ∼1.0 A/W and the electrical conductivity increases under light illumination by ∼400–1000%. Generally, Curcumin metal complex can be used in small-k environmentally friendly production of microelectronic and optoelectronic devices.  相似文献   

17.
In this work, the effect of the film thickness on the crystal structure and ferroelectric properties of (Hf0.5Zr0.5)O2 thin films was investigated. The thin films were deposited on (111) Pt-coated SiO2, Si, and CaF2 substrates with thermal expansion coefficients of 0.47, 4.5, and 22×10−6/°C, respectively. From the X-ray diffraction measurements, it was found that the (Hf0.5Zr0.5)O2 thin films deposited on the SiO2 and CaF2 substrates experienced in-plane tensile and compressive strains, respectively, in comparison with the films deposited on the Si substrates. For films deposited on all three substrates, the volume fraction of the monoclinic phase increased with increasing film thickness, with the SiO2 substrate having the lowest monoclinic phase volume fraction at all film thicknesses tested. The grain size of the films, which is an important factor for the formation of the ferroelectric phase, remained almost constant at about 10 nm in diameter regardless of the film thickness and type of substrate utilized. Ferroelectricity was observed for the 17 nm-thick films deposited on SiO2 and Si substrates, and the maximum remanent polarization (Pr) value of 9.3 µC/cm2 was obtained for films deposited on the SiO2 substrate. In contrast, ferroelectricity with Pr=4.4 µC/cm2 was observed only for film on SiO2 substrate in case of 55 nm-thick films. These results suggest that the films under in-plane tensile strain results in the larger ferroelectricity for 17 nm-thick films and have a ferroelectricity up to 55 nm-thick films.  相似文献   

18.
Cadmium selenide (CdSe) thin films have been successfully prepared by the electrodeposition technique on indium doped tin oxide (ITO) substrates with aqueous solutions of cadmium sulphate and selenium dioxide. The deposited films were characterized with X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive analysis by X-rays (EDAX), photoluminescence (PL), UV spectrometry and electrical resistivity measurements. XRD analysis shows that the films are polycrystalline in nature with hexagonal crystalline structure. The various parameters such as crystallite size, micro strain, dislocation density and texture coefficients were evaluated. SEM study shows that the total substrate surface is well covered with uniformly distributed spherical shaped grains. Photoluminescence spectra of films were recorded to understand the emission properties of the films. The presence of direct transition with band gap energy 1.75 eV is established from optical studies. The electrical resistivity of the thin films is found to be 106 Ω cm and the results are discussed.  相似文献   

19.
We report on the deposition of para-sexiphenyl (PSP) on poly(diphenyl bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylate) (PPNB) by hot wall epitaxy (HWE). The surface polarity of the substrate, PPNB, can be increased by UV-illumination via a photo-Fries rearrangement. The influence of the changed surface polarity on the surface morphology and the structure of the PSP layers were studied by atomic force microscopy (AFM), X-ray diffraction (XRD) and grazing incidence X-ray diffraction (GIXD). The observation of growth spirals and islands, providing mono-layer step heights of standing PSP molecules, underline a high crystallographic order of the films which is confirmed by XRD analysis. GIXD experiments show a strong preferential (0 0 1) orientation of the PSP layers with better alignment on substrates with smaller surface polarity. The γ- and Baker-crystal structures are present in the films grown at low substrate temperatures, but only Baker structure was found in the films deposited at high substrate temperatures. However the main influence on the growth of PSP, is caused by the polarity change induced by pre-treating the PPNB substrate by UV-illumination.  相似文献   

20.
In this paper, polarized Raman spectroscopy is applied to quantitatively assess crystallographic alteration and interfacial residual stress with a micron-scale resolution in highly 〈0 0 0 1〉 oriented (textured) polycrystalline wurtzitic AlN films grown on (0 0 1)-oriented Si substrates. Raman selection rules for the wurtzite structure of AlN were explicitly put forward and a set of Raman tensor elements determined from experimentally retrieved angular dependences of Raman band intensities upon in-plane rotation measurements. An appreciably high degree of homogeneity in the AlN film (i.e., with respect to both in-plane and out-of-plane Euler angles, retrieved according to the proposed spectroscopic algorithm) could be observed in spectral line scans randomly selected on the cross-section of the film/substrate system. These characterizations indicated negligible structural alterations, such as grain tilting and twisting during film growth. However, a non-uniform stress distribution in the AlN film along the film thickness direction was found, which remained stored during manufacturing of the AlN film. A quite remarkable magnitude of compressive residual stress (∼−1.5 GPa) could be measured at the film/substrate interface. Finally, a Raman (non-destructive) statistical characterization of the film system in terms of micromechanical homogeneity by spectral surface mapping is presented, which provides a prompt overall view of the film quality. The proposed procedure should generally be applicable in crystallographic and micromechanical quality control of electronic film devices exhibiting a Raman spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号