首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The exploration of exciplex for organic light-emitting diodes (OLEDs) has been fleetly developed. However, many of them confront with the problems like phase separation and poor solubility, hampering their utilization in solution process. Hence, a series of soluble exciplex luminophores with the simple architecture of D-spacer-A (mCP-6C-TRZ, phCz-6C-TRZ and 2phCz-6C-TRZ) are synthesized and characterized, in which, the alkyl chain as ample spacer breaks the molecular backbone conjugation, induces intermolecular charge transfer process instead of intramolecular charge transfer in solid state. These materials are endowed with narrowed singlet−triplet splitting energy (ΔEST), efficient reverse intersystem crossing (RISC) process, and distinct thermally activated delayed fluorescence (TADF) characteristics. In view of their high triplet energy level (ET) and bipolar carrier transport ability, where efficient exciplexes are applied as the host, the solution-processed phosphorescence devices realize a low efficiency roll-off of 7.0% at 1000 cd m−2, high luminance, current efficiency (CE) and external quantum efficiency (EQE) of 25,990 cd m−2, 20.0 cd A−1 and 6.7%, respectively. These results offer a promising tactic to the establishment of exciplex with TADF feature as host for fabricating efficient solution processed OLEDs.  相似文献   

2.
Thin films made of three low-band gap donor–acceptor copolymers (CDTF, CDTDP and CDTDOP) composed of 4,6-bis(3′-dodecylthiophen-2′-yl)thieno[3,4-c][1,2,5]thiadiazole-5′,5′-diyl as an electron-acceptor structural unit and various electron-donor structural units, such as 9,9-bis(2-ethylhexyl)fluorene-2,7-diyl, 2,5-didodecyl-1,4-phenylene and 2,5-didodecyloxy-1,4-phenylene, respectively, and thin films of their blends with various ratios of a soluble fullerene derivative [6,6]-phenyl C61-butyric acid methyl ester ([60]PCBM) as an active layer for bulk heterojunction solar cells were studied by means of UV–vis absorption spectroscopy and Raman microspectroscopy. The molecules of CDTDP and CDTDOP possess the same main chains; they differ in the side-chain oxygen only, which changes the donor strength of the donor units. UV–vis and Raman studies allow us to show differences in the hindering of molecule planarization and aggregation in the blends. Absorption of the polymer films covered the whole visible spectral region and extended up to near infrared for CDTDOP. The absorption behavior of the CDTDP blend films qualitatively differed from the absorption behavior of the blend films of CDTF or CDTDOP. The Raman measurements were performed at two different laser excitation wavelengths (633 and 785 nm), which enabled the photoluminescence of both components in the Raman spectra to be distinguished. The Raman study was performed in different parts of the films, including the separated areas. It was proven that the separated areas in the blend films had higher contents of [60]PCBM than the rest of the films.  相似文献   

3.
A study of electrical transport in CdS thin films is reported. We have observed, for the first time, that CdS thin film conductivity obeys the Meyer–Neldel rule (MNR). This was deduced from linking the conductivity pre-exponential factor to the activation energy variation. CdS films were deposited by chemical bath deposition at different solution temperatures in order to vary the electrical activation energy of the films. A correlation between the MNR rule and the disorder in the film network is highlighted. The multi-trapping process in the band tail-localized states governs the conductivity in CdS films. This explains the MNR observation in CdS films. The variation of the electrical conductivity pre-exponential factor and activation energy are correlated to the disorder in the film network; this was explained in terms of polaron formation and phonon–electron coupling with disorder.  相似文献   

4.
The electrical properties, memory switching behavior, and microstructures of ZrTiO4 thin films prepared by sol–gel method at different annealing temperatures were investigated. All films exhibited ZrTiO4 (111) and (101) orientations perpendicular to the substrate surface, and the grain size increased with increasing annealing temperature. A low leakage current density of 1.47×10?6 A/cm2 was obtained for the prepared films. The IV characteristics of ZrTiO4 capacitors can be explained in terms of ohmic conduction in the low electric field region and Schottky emission in the high electric field region. An on/off ratio of 102 was measured in our glass/ITO/ZrTiO4/Pt structure with an annealing temperature of 600 °C. Considering the primary memory switching behavior of ZrTiO4, ReRAM based on ZrTiO4 shows promise for future nonvolatile memory applications.  相似文献   

5.
Substrate-free crystallization of BaTiO3 thin films was investigated. It was found that the substrate-free crystallized BaTiO3 films attain a hexagonal structure, whereas the substrate-supported films always crystallize in the tetragonal phase. The substrate-free crystallized hexagonal BaTiO3 demonstrates detectable pyroelectric effect and does not exhibit phase transitions in the 25–423 K temperature range. Therefore, the substrate-free crystallized BaTiO3 represents a previously unreported phase of BaTiO3.  相似文献   

6.
7.
Thin films of vanadium cerium mixed oxides are good counter-electrodes for electrochromic devices because of their passive optical behavior and very good charge capacity. We deposited thin films of V–Ce mixed oxides on glass substrates by RF magnetron sputtering under argon at room temperature using different power settings. The targets were pressed into pellets of a powder mixture of V2O5 and CeO2 at molar ratios of 2:1, 1:1, and 1:2. For a molar ratio of 2:1, the resulting crystalline film comprised an orthorhombic CeVO3 phase and the average grain size was 89 nm. For molar ratios of 1:1 and 1:2, the resulting films were completely amorphous in nature. Scanning electron microscopy images and energy-dispersive X-ray spectroscopy data confirmed these results. The optical properties of the films were studied using UV-Vis-NIR spectrophotometry. The transmittance and indirect allowed bandgap for the films increased with the RF power, corresponding to a blue shift of the UV cutoff. The average transmittance increased from 60.9% to 85.3% as the amount of CeO2 in the target material increased. The optical bandgap also increased from 1.94 to 2.34 eV with increasing CeO2 content for films prepared at 200 W. Photoacoustic amplitude (PA) spectra were recorded in the range 300–1000 nm. The optical bandgap was calculated from wavelength-dependent normalized PA data and values were in good agreement with those obtained from UV-Vis-NIR data. The thermal diffusivity calculated for the films increased with deposition power. For thin films deposited at 200 W, values of 53.556×10−8, 1.069×10−8, and 0.2198×10−8 m2/s were obtained for 2:1, 1:1, and 1:2 V2O5/CeO2, respectively.  相似文献   

8.
Carrier transport in the hexagonal columnar mesophase of a discogen with a built-in dipole moment in the core—hexaalkoxydibenzo[a,c]phenazine (HDBP-3) was investigated. The temperature and field dependences of bipolar carrier mobilities up to the order of 10?3 cm2V?1s?1 in the homeotropically aligned HDBP-3 have been revealed by time-of-flight (TOF) measurement. One-dimensional hopping model was used to discuss the effect of built-in donor–acceptor molecular dipole in the core. The calculation of charge transfer integral also supported the results of mobility measurement. The donor–acceptor molecular dipole in the discogen not only stabilized the mesophase but also contributed to the nondispersive ambipolar nature and substantially enhanced the electron transport in HDBP-3.  相似文献   

9.
Fluorine doped tin oxide (FTO) films were fabricated on a glass substrate by a green sol–gel dip-coating process. Non-toxic SnF2 was used as fluorine source to replace toxic HF or NH4F. Effect of SnF2 content, 0–10 mol%, on structure, electrical resistivity, and optical transmittance of the films were investigated using X-ray diffraction, Hall effect measurements, and UV–vis spectra. Structural analysis revealed that the films are polycrystalline with a tetragonal crystal structure. Grain size varies from 43 to 21 nm with increasing fluorine concentration, which in fact critically impacts resultant electrical and optical properties. The 500 °C-annealed FTO film containing 6 mol% SnF2 shows the lowest electrical resistivity 7.0×10−4 Ω cm, carrier concentration 1.1×1021 cm−3, Hall mobility 8.1 cm2V−1 s−1, optical transmittance 90.1% and optical band-gap 3.91 eV. The 6 mol% SnF2 added film has the highest figure of merit 2.43×10−2 Ω−1 which is four times higher than that of un-doped FTO films. Because of the promising electrical and optical properties, F-doped thin films prepared by this green process are well-suited for use in all aspects of transparent conducting oxide.  相似文献   

10.
Schottky junction organic solar cells (OSCs) employ a high work-function anode and an active layer comprised of fullerene and low concentrations of donor. In this study, the roles of the donor material and the donor–acceptor mixing ratio in Schottky junction OSCs are explored. The results show that the high short circuit current (Jsc) seen in Schottky junction OSCs at low donor concentrations arises primarily from photocurrent contributions from charge-transfer intermolecular states in C60 aggregates. These aggregates absorb light at 400–600 nm and are thus well matched to the solar spectrum. The presence of the donor molecules is shown to be necessary for the dissociation of the C60 aggregate excitons, which ultimately allows for enhanced photocurrents. The exciton dissociation process is governed primarily by the highest occupied molecular orbial (HOMO) energy level difference between the donor and C60, and is only efficient when this difference is large enough for the energetically favorable transfer of holes from C60 to the donor material. Increasing the donor concentration beyond a certain threshold hinders C60 aggregate formation and thus removes its contribution to photocurrent completely. Furthermore, the Voc is shown to be strongly influenced by the choice of donor material, indicating that it is not set by the Schottky junction barrier height as previously thought. In spite of this influence on Voc, the choice of donor in the active layer does not appear to play a significant role in the extraction of holes from the Schottky junction organic solar cells. Optimized chlorine indium phthalocyanine (ClInPc) doped C70 Schottky cells were fabricated to demonstrate a peak power conversion efficiency of 3.6%.  相似文献   

11.
Thin film of silver tin sulfides (Ag–Sn–S) has been deposited on indium tin oxide coated glass (ITO) substrates using potentiostatic cathodic electrodeposition technique. New procedure for the growth of Ag–Sn–S film is presented. An electrolyte solution containing Silver Nitrate (AgNO3), Tin(II) Chloride (SnCl2) and Sodium Thiosulfate (Na2S2O3)in acidic solution (pH ~2) and at temperature of the bath 55 °C were used for the growth of Ag–Sn–S thin film. Prior to the deposition, a cyclic voltammetry technique was performed in binary (Ag–S, Sn–S) and ternary (Ag–Sn–S) systems. This study was carried out to examine the behavior of electroactive species at the electrode surface. Based on these results, the cathodic applied potential was fixed at −1000 mV versus Ag/AgCl to obtain a uniform and good adhesion of ternary thin film. After that, structural, morphological and optical performances of films have been investigated. The X-ray diffraction patterns of the samples demonstrate the presence of the orthorhombic phase of Ag8SnS6 at applied potential of −1000 mV versus Ag/AgCl. Based on the scanning electron microscopy (SEM), it was found that the surface morphology and grain size were strongly influenced by the presence of Sn and/or Ag in the electrolyte bath. The band gaps of binaries and ternary compound are evaluated from optical absorption measurements. Band gap of Ag8SnS6 determined from transmittance spectra is in the range 1.56 eV. Flat-band potential and free carrier concentration have been determined from Mott–Schottky plot and are estimated to be around 0.18 V and 2.21×1014 cm−3 respectively. The photoelectrochemical test of Ag8SnS6 was studied and the experimental observations are discussed in detail.  相似文献   

12.
《Organic Electronics》2014,15(1):322-336
Controllable bistable electrical conductivity switching behavior and resistive memory effects have been demonstrated in Al/polymer/indium-tin oxide (ITO) sandwich structure devices, constructed from non-conjugated vinyl copolymers of PTPAnOXDm with pendant donor–acceptor chromophores. The observed electrical bistability can be attributed to the field-induced intra- and intermolecular charge transfer interaction between triphenylamine electron donor (D) and oxadiazole electron acceptor (A) entities, and is highly dependent on the chemical structure of the copolymers. The vinyl copolymers showed different memory behaviors, which depended on the loading of D/A ratios. The polymers containing only donor or acceptor moieties showed as insulators, the polymers containing both donor and acceptor moieties showed as WORM, flash and DRAM as D/A ratio increased. The structural effect on the physicochemical and electronic properties of the PTPAnOXDm copolymers, viz surface morphology, thermal stability, optical absorbance and photoluminescence, and molecular orbital energy levels, were investigated systematically to study the factors that influence the memory characteristics of the devices.  相似文献   

13.
Al-Sn co-doped ZnO thin films were deposited onto quartz substrates by sol-gel processing. The surface morphology and electrical and optical properties were investigated at different annealing temperatures. The surface morphology showed a closely packed arrangement of crystallites in all the doped films. As prepared co-doped films show a preferred orientation along an (0 0 2) plane. This preferred orientation was enhanced by increasing the annealing temperature to between 400 °C and 500 °C, but there was a shift to the (1 0 1) plane when the annealing temperature rose above 500 °C. These samples show, on average, 91.2% optical transmittance in the visible range. In this study, the optical band gap of all the doped films was broadened compared with pure ZnO, regardless of the different annealing temperature. The carrier concentration and carrier mobility of the thin films were also investigated.  相似文献   

14.
The nanocomposite thin films of titanium dioxide (TiO2)–lead phthalocyanine (PbPc) have been prepared on glass substrates by the electron beam evaporation technique. The optical properties of TiO2/PbPc nanocomposite thin films have been investigated using a spectrophotometric measurement of the absorbance and transmittance at normal incident of light in the wavelength region 300–800 nm. Surface morphology of thin films has been characterized using field emission scanning electron microscopy (FESEM). The UV–vis analysis has been performed to determine the type of electronic transition and the optical energy band gap. The analysis of the spectral behavior of the absorption coefficient in the intrinsic absorption region reveals that the absorption mechanism is due to direct transition. Moreover, by studying the absorption coefficient spectra just below the fundamental absorption edge, the width of band tails of localized states (Urbach energy), steepness parameter and width of the defect states have been evaluated. The obtained results of this novel nanocomposite (TiO2/PbPc) support the desirable features for the optoelectronic devices.  相似文献   

15.
Nickel oxide thin films were prepared by the sol–gel technique combined with spin coating onto glass substrates. The as-deposited films were pre-heated at 275 °C for 15 min and then annealed in air at different temperatures. The effects of the annealing temperature on the structural and optical properties of the films are studied. The results show that 600 °C is the optimum annealing temperature for preparation of NiO films with p-type conductivity and high optical transparency. Then, by using these optimized deposition parameters, NiO thin films of various thicknesses were deposited at the same experimental conditions and annealed under different atmospheres. Surface morphology of the films was investigated by atomic force microscopy. The surface morphology of the films varies with the annealing atmosphere. Optical transmission was studied by UV–vis spectrophotometer. The transmittance of films decreased as the thickness of films increased. The electrical resistivity, obtained by four-point probe measurements, was improved when NiO layers were annealed in N2 atmosphere at 600 °C.  相似文献   

16.
Recently, organic solar cells with ordered morphologies in the form of vertical, interpenetrating donor- and acceptor-pillars have been demonstrated with various fabrication techniques. In order to find the optimal shape and size of these pillar structures, the conventional computational method requires simulating and comparing across different pillar designs; this may be time consuming since the pillar designs could have a large number of variations. In this paper, we establish a theoretical and computational framework that allows for efficient optimization of pillar-type morphologies. We first capture the effects of two key morphological parameters – the specific donor/acceptor interfacial area and the donor/acceptor volume ratio – with closed-form structure–property relations. We then illustrate through three-dimensional device modeling that the photovoltaic behavior of these pillar-structured cells is essentially determined by these two morphological parameters. The cross-sectional pattern of the pillar structures, on the other hand, has no major influence on the cell performance. Finally, we demonstrate a fast procedure to generate a power-density map that can aid in designing the optimal pillar structures.  相似文献   

17.
The process of the formation of carbon nanotube arrays on Ct–Me–N catalytic alloys of low nickel content (10–20 at %) by chemical vapor deposition, where Ct is a catalytic metal from the group of Ni, Co, Fe, and Pd, and Me is a transition metal of group IV–VII of the periodic table, was investigated. It is shown that CNT grow effectively when the alloy contains Ti, V, Cr, Zr, Hf, Nb, and Ta. The addition of nitrogen and oxygen to the alloy’s composition gives rise to a buildup of oxynitrides, expelling of the catalyst, and formation of its clusters on the surface. The replacement of metals in the alloy has an effect on the diameter of the CNT. Moreover, the alloy films 10–500 nm thick can be used for the CNT growth, which is responsible for high degree of homogeneity and the repeatability of the process. CNT growth was not observed when the alloy contained W and Re.  相似文献   

18.
We report the successful growth of vanadium dioxide (VO2) films on SiO2 buffered metal electrode and the fabrication of metal–oxide-insulator–metal (MOIM) junction. The VO2 film has an abrupt thermal-induced metal–insulator transition (MIT) with a change of resistance of 2 orders of magnitude. The electrically-driven MIT (E-MIT) switching characteristics have been investigated by applying perpendicular voltage to VO2 based MOIM device at particular temperatures, sharp jumps in electric current were observed in the IV characteristics under a low threshold voltage of 1.6 V. The Ohmic behavior, non-Ohmic super-linear one, and metallic regime are sequentially observed in the MOIM device with the increase of voltage. It is expected to be of significance in exploring ultrafast electronic devices incorporating correlated oxides based MOIM structure.  相似文献   

19.
We demonstrated a facile method for the fabrication of bilayer polymer solar cells with a controlled heterojunction structure via simple polymer blends. The spontaneous phase separation of poly(3-hexylthiophene)/polyethylene glycol blends provides a bumpy electron-donor layer with characteristic circular depressions. The diameter and depth of the circular depressions can be controlled by varying the PEG content of the blend. The deposition of -phenyl-C61-butyric acid methyl ester as an electron-acceptor layer then creates an interpenetrating donor–acceptor interface for bilayer heterojunction polymer solar cells. The bumpy morphology of the interface results in a significant enhancement in the power conversion efficiency over that of the bilayer polymer solar cells with a typical planar interface, which is mainly due to an increase of photocurrent. An estimation of the field-dependent possibility of charge separation indicates that charge extraction is more efficient than charge recombination in the bilayer devices and the increase in the interfacial area of solar cells with a bumpy-interface leads to generate more electron-hole pairs at the interface.  相似文献   

20.
Phase transformation kinetics in Ga25Se75?xSbx glasses have been determined by non-isothermal differential scanning calorimetric measurements at heating rates of 5, 10, 15, 20 and 25 K/min. The values of glass transition (Tg) and crystallization temperature (Tc) are found to be composition and heating rate dependent. The activation energy of crystallization and glass transition have been determined from the dependence of Tc and Tg on the heating rate. Thin films of Ga25Se75?xSbx glasses have been prepared by vacuum evaporation technique with thickness 400 nm. These thin films were crystallized by thermal annealing and laser-irradiation. The phase change phenomena have been studied by measuring optical absorption of as-prepared and crystallized thin films in the wave length region 400–900 nm. The optical absorption data indicate that the absorption mechanism is non-direct transition. Optical band gap values decrease with increase in Sb contents in Ga–Se as well as with increase in annealing temperature and laser-irradiation time. The optical band gap is shifted due to crystallization by annealing/laser-irradiation. As the phase of the films changes from amorphous to crystalline, a non sharp change of the optical band gap is observed. This gradual decrease in optical band gap was explained to be a result of an amorphous–crystalline phase transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号