首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
H. Wong  K.M. Mok  X.J. Fan 《Desalination》2007,210(1-3):44-51
The investigation involved the study of performance of two local plants' slightly different treatment processes for the removal of natural organic matter (NOM) which comprises trihalomethane (THM) precursors. Ultrafiltration separated the contained NOM into various apparent molecular weight (AMW) fractions to reveal the two processes NOM removal efficiencies, in terms of dissolved organic carbon (DOC), UV absorbance (UV254) and THM formation potential (THMFP). DOC and UV254 levels of source water at both plants tested low and they concentrated in the portion with AMW less than 3,000 Daltons. The combined expression of UV254 with DOC as specific ultraviolet light absorbance (SUVA) indicated that the source water of Macau had a value less than 3 L/mg-m. Therefore the main DOC content was fulvic in character, which is difficult to remove and favors the formation of brominated THMs. Low DOC removal percentages recorded in both processes confirm this observation. However, both processes showed similar removal efficiency of around 50% on humic substances and THM precursors quantified by measurements of UV254 and THMFP, respectively.  相似文献   

2.
This paper describes the singular and composite effects of two catalysts; ultraviolet (UV) light and ultrasound (US) on the ozone (O3) oxidation of a purified solution of a commercially available humic acid with the objective of minimizing trihalomethane formation potential (THMFP). The principal findings are that (1) the most effective reactor conditions for both thedestruction of nonvolatile total organic carbon (NVTOC) and THMFP utilized both US and UV in combination with ozon, and (2) bicarbonate alkalinity reduces the oxidation efficiency of the US–UV–O3 system apparently asa consequence ofradical scavenging.  相似文献   

3.
Two different sources of highly colored groundwater in Southern California, USA, were evaluated to determine the effects of ozone and ozone-hydrogen peroxide oxidation on the water quality of treated groundwater. The water quality objectives were based on color reduction, trihalomethane formation potential (THMFP) reduction, and microbiological stability and regrowth potential of ozonated water in the distribution system, as indicated by the measurement of assimilable organic carbon (AOC). Ozone alone provided better color removal than ozone-hydrogen peroxide oxidation. Even though little overall decreases in dissolved organic carbon (DOC) concentration and THMFP were achieved, a great removal in ultraviolet (UV) absorbance was observed. Ozone oxidation substantially affected the biological stability of treated water as evidenced by the increase in AOC levels. A good correlation was found between AOC and some experimental parameters.  相似文献   

4.
In this article the influence of preozonation on the effectiveness of NOM removal via coagulation processes will be studied (focusing on the influence of the calcium hardness) as well as changes in MW (molecular weight) distribution of humic substances caused by ozonation. Additionally, THMFP removal in both ozonation and preozonation-coagulation processes is assessed. Three different types of water have been used in this study: a natural water from the Úzquiza Reservoir (Burgos, Spain), a synthetic water prepared using natural fulvic acids extracted from the Úzquiza Reservoir and a synthetic water prepared using a commercially supplied humic acid. Molecular weights of humic substances were determined using high-performance size exclusion chromatography (HPSEC); average molecular weights calculated for the unozonated humic substances are 4500 Da for the commercial humic acids and 1000 Da for the natural fulvic acids extracted from the Úzquiza Reservoir. Preozonation shifted the molecular weight distribution of humic substances (both humic and fulvic acids) towards lower average molecular weight values. For the natural water from the Úzquiza Reservoir (with low levels of calcium hardness and hydrophobic fraction (humic substances) being the main fraction of NOM), preozonation has a negative effect on the effectiveness of the coagulation process for NOM removal: the percentages of TOC removal via coagulation decrease with increasing ozone dosage; the maximum TOC removal (33%) is achieved for the unozonated water. Also for this water, ozonation reduced 5–25% of THMFP with ozone doses varying from 0.25 to 2.5 mg O3/L. A preferential THMFP removal, that is to say, higher reduction in THMFP (43%) relative to TOC (28%) is achieved by the coagulation-flocculation process; this also occurs when preozonation is used, independently of ozone dosage.  相似文献   

5.
Catalytic ozonation of humic acids with Fe/MgO   总被引:1,自引:0,他引:1  
Humic acids were degraded by ozone at room temperature in a stirred tank reactor and a fixed bed reactor with Fe/MgO catalysts. Experimental results show that the ozonation with Fe/MgO induced a significant reduction in UV absorbance of humic acids as compared to ozone alone. Fe/MgO was the most efficient catalyst to degrade humic acids in the presence of ozone. GPC (gel permeation chromatography) showed that the humic acids with high molecular weight could be severely decomposed into organic compounds with low molecular weight on the Fe/MgO catalyst, indicating that humic acids could be catalytically decomposed. The continuous reaction experiments with the palletized catalysts supported that humic acids can be removed by catalysis as well as adsorption.  相似文献   

6.
《分离科学与技术》2012,47(7):1391-1404
Abstract

Humic acid (HA) removal using advanced oxidation processes (AOPs) was investigated, particularly UVA/H2O2 and photo Fenton‐like process (UVA/Fe(III)/H2O2). Changes in the UV254 absorbance, dissolved organic carbon (DOC), apparent molecular weight (AMW) distribution, and the Trihalomethane formation potential (THMFP) of the organics were monitored. UVA/Fe(III)/H2O2 based process was found to be effective in removing more than 80% DOC and 90% UV254 absorbance. Differences in the reduction profiles of AMW distributions for UVA/Fe(III)/H2O2 based process and UVA/H2O2 process were observed, with the latter showing preferential removal of a certain molecular weight range. Selected samples were then fractionated into four components: very hydrophobic acids (VHA), slightly hydrophobic acids (SHA), hydrophilic charged (CHA), and hydrophilic neutral (NEU). The HA used is found to consist mostly of VHA fraction that is very susceptible to AOP treatments. The results illustrate that the degradation process occurred via the fragmentation of VHA fraction to form SHA, CHA, and NEU fractions.  相似文献   

7.
Armadale Armadale soil fulvic acid (SFA) was found to contain several loosely bound organic impurities which could be removed by ethyl acetate extraction. The ozonation of purified Armadale SFA at a variety of dosages was characterized by monitoring the UV absorbance, weight loss, pH changes, total acidity, molecular weight and elemental composition. SFA could only be partially degraded even under ozone dosages as high as SFA/O3 (w/w) of 1:6. At high ozone dosages (SFA/O3 1:6) mostly aliphatic compounds rich in oxygen were produced, whereas at low ozone dosages (SFA/O3 < 1:0.5) mainly benzene polycarboxylic acids and polyhydroxy benzene polycarboxylic acids were found. The solid material bisolated from the chlorination (0.5 mg/L residual level) of residues from the ozonation (SFA/O3 1:0.2 to 1:0.5) of Contech SFA did not contain any chlorinated products.  相似文献   

8.
Humic acids (HA) representing the major fraction of the naturally occurring humic substances (HS) are composed of highly functionalized carbon rich polydisperse organic fractions. Clay minerals which are responsible for the transport of inorganic and organic contaminants constitute the main component of the dispersed inorganic material in natural waters. The understanding of interactions between humic substances and clay minerals is an important task for the achievement of an effective water treatment performance. The aim of this research was to investigate the influence of montmorillonite as a representative clay mineral on the TiO2 photocatalytic removal of humic acids as the model compound of natural organic matter. The interactions prevailing between humic acid, montmorillonite and TiO2 surface were assessed prior to the application of photocatalysis in order to address the adsorptive and photolytic behavior of humic acids. The changes attained in humic acid were described by UV–vis spectroscopic i.e. color forming moieties (Color436) and UV absorbing centers (UV365 and UV254), and dissolved organic carbon (DOC) contents. Application of the pseudo first order kinetic model revealed both an enhancement and retardation with respect to the applied montmorillonite dose. The overall effect of montmorillonite on the photocatalytic degradation of humic acid was also evaluated in terms of molecular size distribution profiles (0.45 μm filtered fraction, 100 kDa fraction, 30 kDa fraction and 3 kDa fraction) described by the specified and DOC normalized specific UV–vis parameters.  相似文献   

9.
The objectives of this research were to investigate the reactivity of humic acid (HA) with ozone and to evaluate its effect on decoloration and biodegradability. Reagent HA was selected as a target compound, and the change in overall water quality parameters, molecular weight distribution, color and biodegradability during ozonation were investigated. Partial oxidation such as decoloration was observed, though the complete destruction represented by TOC removal was not significant. The rate of ozone usage decreased as the reaction proceeded. Degradation to the lower molecular weight fragments was confirmed by ultrafiltration. The close relationship between color and fragmentation was verified. Decoloration was represented by a pseudo-first order reaction. Formic, acetic, oxalic and glyoxylic acids were identified by HPLC and ion chromatography as typical low molecular weight organic acids. The biodegradability of ozonated HA solutions, represented in terms of the ratio of BOD5 to TOC, was improved.  相似文献   

10.
An improved procedure was used to isolate and fractionate natural organic matter (NOM) in water for subsequent ozonation and disinfection by-product (DBP) and color removal quantisation. Isolated NOM fractions from two different sources, accounting for approximately 50 to 60% of the dissolved organic material and 60 to 75% of the color, were characterized and then ozonated under conditions approximating those encontered during drinking water treatment. The natural waters also were ozonated. Organic DBPs of either health concern or which may contribute to biological instability of finished water were investigated, including aldehydes, oxoacids and low molecular weight carboxylic acids. pH and ozone dosage were the parameters having the greatest effect on DBP formation. On the basis of UV absorbance measurements, the fulvic acid fractions studied taken together accurately represented the natural water and may be the primary sources of precursor material for aldehydes and oxoacid DBPs. However, as yet unidentified NOM fractions contribute significantly to carboxylic acid formation upon ozonation.  相似文献   

11.
A coagulation–microfiltration (MF) system was studied to treat the discharged membrane backwash water (MBW) to meet the drinking water quality requirements. The values of dissolved organic carbon (DOC) and trihalomethanes formation potential (THMFP) in MBW were higher than those in Luan River water (LRW, the raw water for a pilot-scale membrane plant, which produced MBW used in this study), and organic matter enriched in MBW distributed mainly in molecular weight (MW) > 10k Da. When 15 mg FeCl3/L and 15 mg/L powdered activated carbon (PAC) were added into the system, the average concentration of DOC was reduced from 5.731 mg/L in MBW to 3.377 mg/L in the treated water, and the average UV254 was reduced from 0.047 to 0.030 cm−1. The removal of organic matter was main in the range of MW > 30k Da. Efficient organic removal by the hybrid coagulation–MF system resulted in significant reduction of THMFP in the treated water. Concentrations of trihalomethanes, turbidity, bacteria and coliforms in the treated water were below the limit value of the drinking water standards. The results show that the treated water from MBW is with satisfactory organic and microbiological quality.  相似文献   

12.
The effects of using ultraviolet irradiation (UV), ozone (O3) and the combined O3-UV advanced oxidation process (AOP) on humic acid (HA), which is regarded as the main disinfection by-products (DBPs) precursor, have been evaluated and compared. In particular, aromatic acids, short-chain aldehydes and carboxylic acids were measured. The purpose of this study was to determine the different classes and yields of oxidation intermediates, compare O3, UV and O3-UV for HA removal, as well as investigate the effects of O3, irradiation time, UV intensity on the mineralization of HA. Based on that, the knowledge gap of DBPs generation was made up. The results showed that by UV irradiation and O3 oxidation, HA broke down into smaller molecules that were more hydrophilic, namely formaldehyde, acetaldehyde, propaldehyde, butyraldehyde, glyoxal, methyl-glyoxal, formic, acetic, fumaric, benzoic, phthalic, protocatechuic and 3-hydroxybenzoic acids. Meanwhile, unsaturated conjugated double bonds in the structure of HA were destroyed, which lead to UV254 a slight decrease. Due to the synergistic effect of O3-UV, DOC and UV254 significantly decreased and remained stable after the reaction of 10 min, indicating that O3-UV system had stronger potential of mineralization and lower nonselectivity. Besides, the kinds and concentration levels of the intermediates were obviously reduced with light intensity increasing. Hydroxyl radical (.OH) could mineralize some organics that could not be mineralized by O3.  相似文献   

13.
To improve the quality of water supplied to the City of Seoul in Korea, a pilot-scale evaluation of how the conventional treatment process could be upgraded was conducted. Three candidate processes were evaluated and compared: a conventional process (consisting of coagulation, sedimentation, and rapid sand filtration) plus GAC (Train A); a conventional process plus ozone and GAC (Train B); and a process consisting of coagulation, sedimentation, intermediate ozone, sand filtration, and GAC (Train C). Treatment efficiency of the unit process and overall treatment trains were evaluated using several parameters such as turbidity, dissolved organic carbon (DOC), UV absorbance at 254 nm (UV254), specific ultraviolet absorbance (SUVA), micropollutants (pesticides, benzenes, and phenols), disinfection by-products (trihalomethanes (THMs), haloacetic acids (HAAs) and aldehydes), and total organic halogen (TOX). Results showed that ozone and/or GAC was effective for removing micropollutants and controlling chlorinated by-products such as THMs and HAAs. However, any synergistic effect of ozonation (adsorption and biodegradation) on GAC was observed due to the low concentration of aldehydes in raw and process water.  相似文献   

14.
In this study, two model waters were used to evaluate the ozone effect on aquatic organic matter (AOM) removal by coagulation with inorganic polymer flocculant (IPF)-polyaluminum chloride (PACl). Flocs formation during coagulation processes were detected by using PDA (Photometric Dispersion Analyzer). Apparent molecular weight distribution (AMWD) and resin fractionation (RF) were also performed to characterize the change of AOM as a result of pre-ozonation. The experimental results show that the dosage of O3, characteristics and composition of AOM are the most important factors on the behavior of coagulation. Great differences have been found between the two model waters. Coagulation in model water 1 (MW1) (composed of humic acids) is impaired markedly by pre-ozonation, as more DOC (Dissolved Organic Carbon) is produced with increasing O3 dosage. Floc formation, as exhibited from decreasing of the slopes of FI (Flocculation Index), is retarded gradually during coagulation process. Although residual turbidity is reduced with 1.15 mg/L O3, removals of DOC and UV254 all decreased. As for model water 2 (MW2) (composed of salicylic acid), FI is retarded also, but turbidity and DOC removals of coagulation after pre-ozonation are improved to a certain extent. Coagulation performance judged from removal of DOC is improved distinctly by pre-ozonation. Fractionation results show that molecular weight of organic matter (OM) of MW1 is converted from higher to lower; and OM becomes from more hydrophobic to more hydrophilic, which might be one of the mechanisms involved in the impairment of ozonation on coagulation effect. OM in MW2 is oxidized and mineralized to a greater extent, thus its impairment on coagulation is released. Finally, according to water properties, some proposed applications were provided for application of ozone in water treatment process.  相似文献   

15.
Applied ozone dosages of 20, 25, and 30 mg/L to lake water utilized by the city of Shreveport, LA produced no significant reductions in trihalomethane formation potentials (THMFP). However, the addition of 20 mg/L of hydrogen peroxide and/or 0.67 W/L of UV radiation (254 nm) in combination with ozone produced decreases in THMFP of over 60% in 60 minutes. Smaller THMFP decreases were seen with shorter contact times. The use of H2O2 and/or UV in combination with O3 increased the percentage of applied ozone consumed by the lake water (i.e., enhanced the ozone mass transfer) five times over simple ozonation.  相似文献   

16.
Ceramic membrane ultrafiltration experiments were performed with 7-channel tubular membrane (molecular weight cutoff = 300 kD) at a constant transmembrane pressure and crossflow rate under recirculation mode. In the experiments, the fouling characteristics of river water (RW, dissolved organic carbon (DOC) = 3.4 mg/L) were compared with humic acid solution (HA1, DOC = 3.7 mg/L). Also, the fouling behaviors of secondary effluent (SE, DOC = 7.9 mg/L) were compared with HA2 (DOC = 8.5 mg/L). Fluorescence excitation-emission matrix, modified Hermia’s model, and resistance-in-series model were used to analyze the fouling characteristics. Results demonstrated that RW and SE could cause ceramic membrane fouling more rapidly due to their hydrophilic organic compositions in comparison with hydrophobic HA.  相似文献   

17.
The impact of wastewater derived effluent organic matter (EfOM) on the decomposition of ozone and formation of hydroxyl radicals (HO) was evaluated for four wastewaters (sites A, B, C1 and C2). The reactivity of EfOM was assessed by fractionation into four apparent molecular weight (AMW) fractions (<10 kDa, <5 kDa, <3 kDa, and <1 kDa). The RCT, defined as the ratio of HO exposure to ozone exposure (∫HOdt?/?∫O3dt), was measured for all fractions and bulk waters (at times greater than 5 seconds), with an initial ozone dose equal to the total carbon concentration of EfOM (ozone:DOC ratio of 1). The RCT of all the samples and ozone first-order decay rates of two of the waters increased significantly (95% confidence) from the bulk sample to the <10 kDa fraction, and decreased with AMW. This indicates that the intrinsic capacity of different molecular weight fractions of the EfOM have different reactivity with ozone.  相似文献   

18.
This research on a pilot scale focuses on the reaction of ozone with natural organic matter (NOM) for three water qualities with different dissolved organic carbon (DOC) concentrations and NOM compositions, obtained after several stages of an anion exchange process. It was shown that for the same ozone dosage per DOC, the ozone demand was higher, less bromate was formed and a lower disinfection capacity was reached for water containing mainly humic substances, than for water where the humic substances were partly removed. It can be concluded that NOM composition, specifically the humic substances, influences the ozone demand, disinfection capacity and bromate formation.  相似文献   

19.
The influence of the characteristics of natural organic matter (NOM) on disinfection by-product formation was investigated for Maeri raw water, located in downstream of Nakdong river and Hoedong reservoir at Busan in Korea. The NOM was chlorinated and analyzed for trihalomethanes (THMs), 5 haloacetic acids (HAA-5) and total organic halide (TOX). Aromatic contents determined by specific UV absorbance at 254 nm (SUVA) correlated well with THMs, HAA-5 and TOX formation for the NOM in the Maeri raw water and Hoedong reservoir. Especially, THMFP/DOC showed better correlation with SUVA than HAAFP-5/DOC and TOXFP/DOC with SUVA. Chloroform formation showed good correlation with SUVA for Maeri raw water, but poor correlation with SUVA for the Hoedong raw water. In addition, TCAA formation potential showed good correlation with SUVA for both raw waters. In contrast, a lack of correlation was observed for DCAA formation for both raw waters. THM formation per unit DOC concentration was 70.2–81.1% and 18.9–29.8% for hydrophobic and hydrophilic organic matter in the Maeri raw water, respectively, in which the hydrophobic organic matter had much higher THM formation. In contrast, HAA-5 formation per unit DOC concentration varied seasonally for Maeri raw water. THM formation in the Maeri raw water had a good correlations with SUVA regardless of the ratio of hydrophobic and hydrophilic fraction, and THM formation per unit DOC concentration was higher for the order of humic acid>fulvic acid>hydrophilic organic matter. HAA-5 formation per unit DOC concentration for the hydrophilic organic matter was about 30 μg per mg DOC regardless of SUVA values, but HAA-5 formation per unit DOC concentration for the hydrophobic organic matter was proportionally increased with increasing SUVA values. However, the HAA-5 formation per mg DOC was the highest for the hydrophilic organic matter.  相似文献   

20.
Influence of dissolved organic carbon (DOC) on the quantitative estimation of Pu-239+240 in the groundwater was investigated. Impact of DOC in the range of 5–30 ppm was studied in solutions which were directly taken from different wells, whereas to conduct the experiment at the elevated level of DOC, i.e. in the range of 27–60 ppm, groundwater was spiked with stock solution of humic acid (HA), a high molecular weight organic compound. Samples with varying concentrations of DOC were artificially contaminated with a pre-calibrated solution of Pu-239+240 in the laboratory in the range of 200 μBq–17 Bq l–1, and the pH was controlled at 7.4. Quantitative estimation of plutonium was carried out by pre-concentrating it with Fe(OH)3. This purified plutonium from Ca2+, Mg2+ and amphoteric elements. The percentage recovery of Pu-239+240 was 90–92% in the solution having DOC 10 ppm, whereas in samples with DOC in the range of 10–60 ppm, the recovery was 42–43%. Therefore, to improve the recovery of plutonium in the case of the elevated level of DOC, a modified procedure for its quantitative estimation was adopted. In this procedure, after filtration the samples were refluxed with conc. HNO3 and H2O2 to destroy the DOC before pre-concentrating Pu with Fe(OH)3. By this modified procedure, the average recovery of plutonium at high concentrations of DOC was improved to 90–95%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号