首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Siemens made the first ozone generation system by corona discharge about hundred and fifty years ago. At present mainly two types of atmospheric pressure electrical discharges - corona discharge and dielectric barrier discharge are used for production of ozone. Another type of discharge, which can be used for this purpose, is multineedle to plate electrical discharge enhanced by the gas flow. Contrary to the conventional arrangement when the gas is flowing around the needles we studied the discharge in which the gas was pumped through the needles. Results of studies of ozone and nitrogen oxides production by DC electrical discharge in air at atmospheric pressure with a single hollow needle to plate electrode configuration enhanced by the flow of air through the needle for both polarities of the needle, different airflow rates and currents are presented in this paper.  相似文献   

2.
In the fields of material processing and environmental technology, atmospheric pressure non-thermal plasmas embrace a broad range of applications. Ozone generation is one of them. This paper discusses a DC-excited atmospheric pressure glow discharge in a multi-pin-to-plane electrode configuration for the production of ozone in air. The influence of discharge current, temperature, flow rate and air humidity is investigated. A simple model is proposed to predict the experimental results for the ozone production and ozone concentrations.  相似文献   

3.
This paper deals with high frequency modeling of silent discharge ozone generators (OGs). The electrical characteristics of two simple silent discharge OGs operated at low and high frequency are analyzed and compared. An equivalent electric model is proposed for the operation of the OG at high frequency. This model can be used to optimize the electronic power converter used to supply silent discharge OGs at high frequency. Experimental results measured in the laboratory for two particular OGs are presented to validate the proposed model.  相似文献   

4.
The parameters, which determine the performance of ozone generators, are efficiency and maximum ozone concentration. The efficiency from oxygen has been found to be nearly independent on the kind of barrier discharge arrangement (volume, surface, coplanar), while the ozone concentration saturation level depends on the specific design of the generator. These phenomena are explained with features of the discharge process and the properties of chemical reactions, respectively. The importance of a limit in the energy density of the discharge is highlighted.  相似文献   

5.
An attempt to explain the phenomenon of the effect of electrode rotation on the ozone generation process is presented. A discharge photography method was applied and computer analysis method was used to find discharge differences between electrode rotational and non-rotational cases. The research presented shows that with electrode rotation the discharge was more uniform and the ozone generation efficiency increased about 15% compared to an ozonizer with a non-rotating electrode. In addition, during the research, the most suitable electrode rotational speed for the ozone generation process was estimated.  相似文献   

6.
In this paper an ozone generation system that uses square bipolar pulses at 1900 Hz frequency (carrier signal) modulated with low frequency square wave is presented. The optimization of the carrier was done by sweeping the frequency from 500 to 2400 Hz and the duty cycle from 20 to 100 %, obtaining the best results at 1900 Hz and 80 % respectively. The experiment was done using a corona discharge generator with glass dielectric, 2 mm gap, water‐cooling at 26 °C and oxygen as the feed gas. Different levels of ozone production were obtained by changing the duty cycle of the modulator signal. The modulator signal works on a discrete way with whole numbers of pulses. The priority of the pulse polarity can be set so the beginning of the pulses may be either positive or negative. A dead time between pulse trains is always present with a minimum value of 10% of the modulator signal. The dead time contributes to the generator cooling because no energy is applied.

A comparative study between the proposed system and a 60 Hz traditional source generator shows an increase in the ozone concentration and ozone production rate, as well as a reduction of the voltage required to produce the corona discharge by using a pulse train at medium frequency.  相似文献   


7.
Volume Dielectric Barrier Discharge (DBD) is nowadays considered the most effective way for ozone generation in the industry. Some papers were published only on surface discharge reactors applied for ozone generation. This article describes an experimental investigation for the comparison between these two reactor types of ozone generation. Two surface and volume DBD reactors of cylindrical shape were used in the same experimental conditions. Obtained results showed that although the majority of ozone generators are of volume discharge type, the surface DBD presents significant superiority in terms of ozone generation and energy efficiency.  相似文献   

8.
In this work, a strategy is presented to optimize the ozone generation by response surface methodology. A dielectric barrier discharge ozone generator was developed in which it is possible to control electrical current frequency and gas flow entering the generator. Response surface methodology was used to identify ozone generator optimum operational conditions, that is, those that permit considerable ozone productivity and high concentration of ozone gas.  相似文献   

9.
The main objective of the paper is to establish an arrangement of sources of exergy losses (internal and external ones) and to estimate the value of the losses in an industrial ozone production installation. An exergetic model of industrial installation in a system approach corresponding to real conditions has been formulated.  相似文献   

10.
The gap distance, electrode material, voltage and gas flow velocity were optimized with gas pressure variation of dielectric barrier discharge (DBD) for producing high concentration of ozone. There exists an optimum gas pressure at which the highest ozone concentration is produced with other parameters being fixed. This optimum gas pressure value changes accordingly as the other parameters changed. As the discharge continues at the optimum pressure, the ozone concentration could increase or decrease slowly. This aging effect has different characteristics with the metal electrode material and the impurity level of the oxygen gas used for ozone generation. The aging effect is supposed to be related with the catalytic effect of metal oxide, which is generated in the discharge zone. The change in the characteristic of optimum pressure by the other parameters, indicate that the ozone concentration is deeply related with the filament self-organization characteristics of DBD. At the final optimized condition, the ozone concentration was higher than 22.5 wt.%.  相似文献   

11.
An ozone generator using a rotating electrode to improve ozone generation efficiency is proposed. The ozone generator electrode unit consists of a rotating electrode and fixed electrode. The rotating electrode has the grounded 36 pieces of tungsten wires fixed in parallel to the rotation axis on the rotating cylinder surface. A dielectric electrode is used as a fixed electrode located on the inside of the tube of the electrode unit. The width of the apparent discharge gap is 1mm. Alternating current with a frequency of 50 Hz is applied to the electrode unit. The rotation speed can be adjusted from 0 rpm to 1200 rpm by a variable speed motor. Oxygen gas is used as the material gas. Higher ozone concentration and higher ozone generation efficiency are obtained compared with that when the rotation speed is 0 rpm. The gas temperature is measured at the inlet and outlet of the ozone generator, and the rotation speed for the cooling effect is most effective at about 500 rpm. The maximum generation efficiency is estimated to be 61 g/kWh at 800 rpm, and this value is twice as large as in the case of 0 rpm.  相似文献   

12.
Synthesis of ozone in coaxial cylinder non-thermal plasma reactors with different structures was investigated in this paper. With digital measuring technology, the absorption energy of non-thermal plasma reactors induced by pulse streamer corona was estimated. In the view of energy absorption of non-thermal plasma reactors, pulse input energy depended on reactor structures, as well as pulse parameters, such as pulse amplitude and DC bias. With coaxial cylinder reactors energized by pulse voltage, the influences on ozone generation of pulse voltage polarity, pulse amplitude, and pulse repetition rate were studied. It was found that positive pulse voltage induced higher ozone generation than negative pulse voltage and higher amplitude pulses generated more ozone. Increasing the pulse repetition rate at a low level increased ozone generation to some extent, but then leveled off with further increasing. A critical repetition rate was found at which the ozone synthesis was the most efficient. Lower pulse amplitude was associated with higher critical repetition rate. Superimposing DC bias on pulse voltage was an effective method to enhance ozone generation. Besides, discharge modes and electrode structures of reactors affect ozone generation. A mixed discharge mode of volume and surface discharges was the most effective mode to generate ozone in all of the experimental discharge modes, namely volume, surface, volume and surface mixed discharge modes. Moreover, helix-cylinder reactors were better than wire-to-cylinder reactors in generating ozone.  相似文献   

13.
BBC ozone generators, with their high efficiency and high production density, have opened up for the exceptionally strong oxidizing agent ozone, a wide range of new possibilities in industrial applications. The article reports on measurements carried out on type OH ozone generators and on their use in industrial processes. An indication of future developments is given.  相似文献   

14.
Ozone production has been investigated using an atmospheric pressure dielectric barrier discharge in pure O2 at room temperature with and without ultrasonic irradiation. It was driven at a frequency of either 15 kHz or ~40 kHz. The ozone production was highly dependent on the O2 flow rate and the discharge power. Furthermore, powerful ultrasonic irradiation at a fundamental frequency of ~30 kHz with the sound pressure level of ~150 dB into the discharge can improve the ozone production efficiency, particularly when operated at the frequency of 15 kHz at the flow rate of 15 L/min.  相似文献   

15.
Some North American manufacturers are selling devices which produce ozone from UV radiation, which is pumped or sucked into spas, presumably to disinfect the water, without having to use chlorine. To test this claim, a private spa used by two people at least once a day was equipped with a UV radiation unit and an ozone (generating by UV) unit. Bacterial analyses were conducted during experiments carried out using chlorine alone, ozone generated by UV radiation, unit and an ozone (generating by UV) unit. Bacterial analyses were conducted during experiments carried out using chlorine alone, ozone generaed by UV radiation, and ozoen in combination with UV radiation.

Heterotrophic plate counts, and counts of Staphyiococcus aureus and Pseudomonas aeruginosa were lowest when using chlorine, next lowest when using ozone #x002B; UV radiation, and highest when using UV-generated ozone. It is concluded that insufficient dissolved ozone is present for a sufficient reaction time to effect disinfection of these organisms by ozone generated by UV radiation. The fact that the odor of ozone was present above the spa water indicates that contacting also was inefficient.  相似文献   


16.
Because of different field strength and energy density distributions in volume (VD), surface (SD) and coplanar discharge (CD) arrangements the ozone yield will differ in general. While in VD configurations the initial field strength distribution is rather uniform, the situation is quite different in CD and especially SD devices. The distributions change during discharge development as well as the energy density in the discharge region and by this the ozone yields. The situation in SD arrangements is discussed in detail and is compared with those in VD and CD configurations.  相似文献   

17.
Construction and experimental results of an ozone generator using a ceramic transformer as a high voltage power supply are described. The ceramic transformer has such characteristics that the higher voltage step up ratio and lower input impedance are obtained against higher load impedance. It gives a benefit of current self-regulation. The ozone generator consists of an oscillator, ceramic transformer, four times voltage rectifier and needle-plane electrodes. The corona discharge can be kept constant continuously by the functions of the ceramic transformer with out any current regulating circuits. Thus, the ozone generator has a simple construction. The amount of generated ozone is variable from 0.5 “ppm” to 2.0 “ppm” and can be adjusted by varying the input voltage to the ceramic transformer. This kind of ozone generator is suitable for deodorization and sterilization in home kitchens, and shoe cases and refrigerators.  相似文献   

18.
Ozone generation in both positive and negative corona discharges DC corona, both operated in glow regime, feed by dry CO2 has been studied. Higher ozone concentrations were observed in negative corona discharges. Ozone formation was found to be strongly dependent upon both the flow rate of the gas and on the radius of the outer electrode. The physical characteristics of the discharge were monitored through measurement of the discharge current. Small increases in the gas flow rate were observed to cause a significant increase in the discharge current of a negative corona discharge but little/no effect was observed in positive corona.  相似文献   

19.
Ozone generation in both positive and negative corona discharges DC corona, both operated in glow regime, feed by dry CO2 has been studied. Higher ozone concentrations were observed in negative corona discharges. Ozone formation was found to be strongly dependent upon both the flow rate of the gas and on the radius of the outer electrode. The physical characteristics of the discharge were monitored through measurement of the discharge current. Small increases in the gas flow rate were observed to cause a significant increase in the discharge current of a negative corona discharge but little/no effect was observed in positive corona.  相似文献   

20.
A mathematical model combining chemical kinetic and reactor geometry is developed for ozone synthesis in dry O2 streams with a wire-tube dielectric barrier discharge (DBD) reactor. Good agreement is found between the predicted ozone concentrations and experimental data. Sensitivity analysis is conducted to elucidate the relative importance of individual reactions. Results indicate that the ground-state oxygen atom is the most important species for O3 generation; however, ozone generation will be inhibited if the O atom is overdosed. The excited species, that is, O(1 D) and O2(b 1Σ), can decompose O3 and suppress ozone synthesis. The model developed is then applied to modify the original DBD reactor design for the enhancement of ozone yield. With a thinner dielectric thickness, more than 10% increase of ozone concentration is achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号