首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An adaptive incremental sliding mode control (AISMC) scheme for a robot manipulator is presented in this paper. Firstly, an incremental backstepping (IBS) controller is designed using time-delay estimation (TDE) to reduce dependence on the mathematical model. After substituting IBS controller into the nonlinear system, a linear system w.r.t. tracking errors is obtained while TDE error is the disturbance. Then, the AISMC scheme, including a nominal controller and an SMC, is developed for the resulted linear system to improve control performance. According to the equivalent control method, the SMC in the AISMC scheme is to handle TDE error. To receive optimal control performance at the sliding manifold, an LQR controller is selected as the nominal controller. The SMC is designed based on positive semi-definite barrier function (PSDBF) since it prevents switching gains from being over/under-estimated, and two practical problems are addressed in this paper: A new PSDBF is designed and conservative (large) setting bounds affecting tracking precision and/or system stability are avoided; An improved PSDBF based SMC is developed where the PSDBF and an adaptive parameter are used simultaneously to regulate switching gains, and the system is still stable when sliding variable occasionally exceeds the predefined vicinity. Moreover, finite-time convergence property of the sliding variable is strictly analyzed. Finally, real-time experiments are conducted to verify the effectiveness of the proposed control method.  相似文献   

2.
本文以TCR型SVC为研究对象,应用先进的非线性控制理论来进行控制器设计,以充分挖掘SVC的工作潜能。详细分析了滑模变结构控制的原理、优缺点,并应用趋近率的设计方法推导出基于指数趋近率的控制率,在与PID控制的跟踪效果对比中,显示出优良的快速性和跟踪精度。另外针对滑模变结构控制所固有的抖振现象,本文提出一种改进的滑模变结构控制系统。最后使用Matlab/simulink环境对所使用的方法进行了仿真验证。  相似文献   

3.
航空发动机模糊滑模变结构控制研究   总被引:3,自引:1,他引:2  
针对航空发动机是一个具有时变不确定性的非线性系统,结合模糊控制和滑模变结构控制的特点,提出了一种基于模糊滑模变结构控制的航空发动机控制方法.采用线性滑模面和指数趋近律设计变结构控制器,应用模糊逻辑系统自适应调节切换增益,避免了传统滑模变结构控制系统在到达阶段对不确定性的敏感性,消除了滑模控制中的抖振.通过数字仿真,结果表明所设计的模糊滑模变结构控制器对系统的参数摄动和外部干扰具有不变性,使被控系统在整个控制阶段都具有较强的鲁棒性.  相似文献   

4.
This paper concerns with the problem of designing a passivity-based fractional-order (FO) integral sliding mode controller for uncertain FO nonlinear systems. Utilizing the FO calculus, it is showed that the state trajectories of the closed-loop system reach the FO switching manifold in finite time. The control law ensures the asymptotical stability on the sliding surface. A parameter adjustment scheme for FO integral sliding surface is proposed by using the linear matrix inequality (LMI) approach. The proposed controller can be applied to different systems such as chaotic systems. Finally, simulation results are provided to show the effectiveness of the proposed method controlling chaos in FO Chua circuit and FO Van-der-Pol oscillator.  相似文献   

5.
Lee  J.J. 《Electronics letters》1991,27(23):2111-2113
Using nonlinear switching surfaces, a multivariable variable structure system (VSS) for nonlinear time-varying systems in the presence of disturbances and parameter variations is proposed. In the previous sliding mode control, the switching surfaces are linear functions and therefore the speed of response is relatively low. To overcome this problem, the proposed method improves the speed of response and good transient response is thus obtained. An example has shown its effectiveness in controlling nonlinear time-varying systems.<>  相似文献   

6.
A self-organizing fuzzy controller to augment a sliding-mode control (SOFSMC) scheme for a class of nonlinear systems is proposed. The motivation behind this scheme is to combine the best features of self-organizing fuzzy control and sliding-mode control to achieve rapid and accurate tracking control of a class of nonlinear systems. The chatter encountered by most sliding-mode control schemes is greatly alleviated without sacrificing invariant properties. A stability analysis is presented; the design guidelines and the class of applicable systems are clearly identified. To verify the scheme, the authors performed experiments on its implementation in a magnetic levitation system. The results show that both alleviation of chatter and robust performance are achieved; the advantages of the scheme are indicated in comparison with the conventional sliding-mode design  相似文献   

7.
The design and the microprocessor-based implementation of a variable-structure-strategy (VSS) controller for a brushless DC motor drive are described. The controller is a conventional variable-structure design in the continuous-time domain. However, the microprocessor implementation using a constant sample period implies that full sliding mode is not achieved. The properties of the quasi-sliding that results are explored. It is shown that the sliding line expands into a sliding region, which can be described as a sector. The size of this sector is related to the sampling period and the switching gains. A modified design procedure is proposed for discrete-time VSS design. The design was verified on an experimental set-up, which generated variations in system parameters as well as external load disturbances  相似文献   

8.
VSS control of unity power factor   总被引:1,自引:0,他引:1  
Three-phase pulsewidth modulation (PWM) converters, specifically, voltage-source inverters (VSI), are possibly the most frequently used power converters for applications such as industrial motor control, robotics, air conditioning and ventilation, uninterruptible power supplies, electric vehicles, etc. With the introduction of standards on limiting harmonic pollution of electrical power distribution systems, three-phase PWM converters are being considered as prime candidates for interfacing high-power electronic equipment to power supply lines. In these applications, converters can provide input currents without distortion and with unity power factor. In this paper, the idea of using variable-structure system (VSS) control strategy of a boost rectifier in sliding mode is described. A new discrete-time control algorithm has been developed by combining VSS and Lyapunov design. It possesses all the good properties of the sliding mode and avoids the unnecessary discontinuity of the central input, thus eliminating chattering, which has been considered a serious obstacle to applications of VSS. A unified control approach for output DC voltage and input AC currents based on discrete-time sliding mode is developed. The reference tracking performance is demonstrated in terms of transient and steady-state characteristics by simulation and experimental results. The invariance and the robustness features of the proposed control method are verified by experiment in the presence of large uncertainty in parameters and external perturbations  相似文献   

9.
袁丽英  张宏  崔航  张峰 《信息技术》2011,(7):100-102
针对传统滑模控制的抖振问题,利用线性化反馈技术,将模糊自适应和滑模控制相结合,设计一种新型的模糊滑模控制器。通过模糊推理和基于Lyapunov函数的稳定性分析,获得模糊控制规则的自适应律,构成自适应模糊滑模控制器,有效解决了传统滑模控制中,需要确定参数摄动和外部干扰上确界不确定性问题,倒立摆上的运行结果表明该方法的有效性。  相似文献   

10.
This paper investigates the sliding mode control problem for networked control systems, which are influenced by the non-ideal network environment, such as network-induced delays, packet dropouts and quantization errors. The states of the system are assumed to be unavailable, and an observer is designed to estimate the state of the system, based on which a sliding mode controller is given to guarantee the closed-loop system to be stable. Furthermore, it is shown that the proposed control scheme ensures the reachability of the sliding surfaces in both the state estimate space and the estimation error space. Finally, a numerical example is given to illustrated the effectiveness of the proposed methodology.  相似文献   

11.
This paper proposes a novel adaptive hierarchical control approach for Steer-by-Wire (SbW) vehicles to improve the handling stability. The high-level stability control scheme contains a variable steering ratio (VSR) strategy based on the adaptive-network-based fuzzy inference system (ANFIS) and an active front steering (AFS) controller designed with the integral sliding mode method by tracking the expected yaw rate, in which the desired front wheel angle is generated to enhance the cornering stability performance. Besides, an adaptive tracking controller (ATC) for the SbW system is designed by using the adaptive sliding mode control method to achieve desired steering performance in the lower level. The proposed adaptive control strategy is validated with different driving circles from ISO standards in simulation tests and hardware-in-the-loop (HiL) experiments. The results demonstrate that the designed control approach improve the vehicle handling stability significantly, even in some extreme driving conditions.  相似文献   

12.
The authors focus on the implementation of a variable structure systems (VSS) controller with smoothing laws in the design of effective tracking control for multi-input, multi-output robotic arms. The controller is realized by selecting powerful smoothing methods, such as balance conditions or their simplification, to reduce or remove undesirable chattering while keeping the robust characteristic that rejects system uncertainties. Giving careful consideration to actual system constraints, a design principle for selecting different smoothing methods is obtained and confirmed by experimental results  相似文献   

13.
A design scheme of the finite-time tracking controller is given for the nonholonomic systems with extended chained form. The relay switching technique and the terminal sliding mode control scheme with finite-time convergence are used to the design of the controller. The global stability is guaranteed and the system states accurately track the states of the reference model in finite time. The simulation results for two physical models of a knife-edge and a wheeled mobile robot have demonstrated the effectiveness of the proposed algorithm.  相似文献   

14.
The continuous, accurate, and robust sliding mode tracking controller based on a disturbance observer for a brushless direct drive servo motor (BLDDSM) is presented. Although the conventional sliding mode control (SMC) or variable structure control (VSC) can give the desired tracking performance, there exists an inevitable chattering problem in control which is undesirable for a direct drive system. With the proposed algorithm, not only are the chattering problems removed, but also the prescribed tracking performance can be obtained by using the efficient compensation of the disturbance observer. The design of the sliding mode tracking controller for the prescribed, accurate, and robust tracking performance without the chattering problem is given based on the results of the detailed stability analysis. The usefulness of the proposed algorithm is demonstrated through the computer simulations for a BLDDSM under load variations  相似文献   

15.
A novel control technique has been devised to obtain high dynamics responses from a multilevel power conditioning converter. The theory of variable structure control systems with sliding mode has been followed, taking into account several problems that may be encountered in space environments. The analytical study made provides general tools to design AC power conditioning systems for any application. The new control scheme, its mathematical analysis and digital simulation results relevant to a 115 V/400 Hz AC power system are presented and discussed  相似文献   

16.
Magnetic servo levitation (MSL) is currently being investigated as an alternative to drive fast-tool servo systems that could overcome the range limitations inherent to piezoelectric driven devices while operating over a wide bandwidth. To control such systems, a feedback-linearized controller coupled with a Kalman filter has been previously described. Performance limitations that degrade tracking accuracy suggest the use of a more robust controller design approach, such as sliding-mode control. Current literature on sliding mode deals almost exclusively with systems that are affine on the input, while the magnetic fast-tool servo is nonlinear on it when the control action is current command. This paper discusses a sliding mode-based controller that overcomes the aforementioned problem by defining a modified sliding condition to calculate control action. Experimental results demonstrate the feasibility of achieving long-range fast tracking with magnetically levitated devices by using sliding-mode control  相似文献   

17.
This paper investigates the robust adaptive sliding mode control problem for a class of nonlinear uncertain neutral Markovian jump systems. In this study, the system state is unmeasurable and the upper norm bounds of the nonlinear functions are unavailable. An observer-based adaptive sliding mode controller is synthesized to render the resulting error system stochastically stable with a prescribed disturbance attenuation level. Finally, a numerical example is exploited to demonstrate the effectiveness of the control scheme.  相似文献   

18.
针对一类具有死区模型并且控制增益符号已知的不确定多输入多输出非线性时滞系统,基于滑模控制原理提出了一种稳定的自适应神经网络控制方案。该方案通过使用Lyapunov-Krasovskii泛函抵消了因未知时变时滞带来的系统不确定性。通过利用积分型李亚普诺夫函数,并且构造逼近连续函数,闭环系统证明是半全局一致终结有界。仿真结果表明了该方法的有效性。  相似文献   

19.
Since the hydraulic actuating suspension system has nonlinear and time-varying behavior, it is difficult to establish an accurate dynamic model for a model-based sliding mode control design. Here, a novel model-free adaptive sliding controller is proposed to suppress the position oscillation of the sprung mass in response to road surface variation. This control strategy employs the functional approximation technique to establish the unknown function for releasing the model-based requirement. In addition, a fuzzy scheme with online learning ability is introduced to compensate the functional approximation error for improving the control performance and reducing the implementation difficulty. The important advantages of this approach are to achieve the sliding mode controller design without the system dynamic model requirement and release the trial-and-error work of selecting approximation function. The update laws for the coefficients of the Fourier series functions and the fuzzy tuning parameters are derived from a Lyapunov function to guarantee the control system stability. The experimental results show that the proposed control scheme effectively suppresses the oscillation amplitude of the vehicle sprung mass corresponding to the road surface variation and external uncertainties, and the control performance is better than that of a traditional model-based sliding mode controller.  相似文献   

20.
滑模变结构在AUV航向控制中的应用   总被引:2,自引:1,他引:1  
针对自主式水下机器人的控制特点,建立了机器人的动力学数学模型。利用运动解耦的方法完成了水下机器人完备控制量的构建。在滑模变结构控制理论的基础上,设计了水下机器人的分布式滑模控制系统,并在Simulink下完成滑模控制器的建模。预先设定了仿真过程中机器人的运动轨迹跟踪,结果表明,滑模控制能有效地控制AUV的航向,对外部扰动具有较强的鲁棒性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号