共查询到19条相似文献,搜索用时 78 毫秒
1.
传统的基于色彩直方图或空间色彩直方图的Mean Shift跟踪算法,在诸如跟踪目标出现尺度变化的复杂条件下,无法得到准确的跟踪结果。这是因为色彩直方图或空间色彩直方图无法显著区分颜色相近的目标和背景。鉴于此,提出了一种基于空间边缘方向直方图的Mean Shift跟踪算法,使用空间分布和纹理信息作为匹配信息。实验结果表明,该算法能够有效的处理遮挡、光照变化和尺度缩放等复杂情况,对目标进行准确有效的跟踪,改善了传统方法在尺度缩放等方面的局限性。 相似文献
2.
为解决基于核的Mean Shift跟踪算法在颜色相近时,容易出现跟踪不准确或者跟踪丢失的问题,同时提高跟踪的可靠性与准确度,分析了近年来的目标跟踪情况,提出一种基于分块颜色直方图(BCH)和方向梯度直方图(HOG)的Mean Shift跟踪算法.其中BCH包含目标的空间信息,能够很好地应对形变;HOG能够很好地解决光照变化和阴影的影响.使用标准数据集进行测试,结果表明:所提算法可以达到高于80帧/s的跟踪速度,分别优于跟踪-学习-检测(TLD)和核相关滤波(KCF)算法1.7%和2.2%. 相似文献
3.
4.
针对仅使用单一颜色或纹理特征并不能达到较好的图像检索效果的问题,提出了一种结合颜色和纹理特征的图像检索算法。首先,颜色微观部分利用颜色直方图,刻画每种颜色的像素占整个图像的比例;然后,宏观部分应用颜色熵和位平面熵分别对图像处理,其中位平面熵取特征较明显的前4层,并对每层的位平面熵加权;最后,根据定义的五种基本纹理结构基元中各像素点的颜色值和角度值,结合颜色特征,实现图像检索。实验结果表明,加权位平面熵和不加权位平面熵比较,在Corel-1000数据集上平均查准率和平均查全率分别提高10.01个百分点和1.2个百分点。结合颜色和纹理特征的图像检索算法与仅表现纹理特征的结构元素描述(SED)方法相比,在Corel-10000数据集上平均查准率和平均查全率分别提高4.3个百分点和2.1个百分点,有效地提高了图像检索效果。 相似文献
5.
基于颜色复杂度的加权颜色直方图图像检索算法 总被引:4,自引:0,他引:4
为了进一步提高基于颜色直方图的图像检索系统工作效率,以人眼视觉感知特性为基础,结合局部图像相关性,提出一种基于颜色复杂度的加权颜色直方图图像检索新方法.该方法计算反映局部区域变化的像素点颜色复杂度,利用颜色复杂度对每个像素点进行加权处理,构造能有效反映视觉感知特性的加权颜色直方图并进行图像检索.仿真实验结果表明,本文算法能够准确和高效地查找出用户所需内容的彩色图像,并且具有较好的查准率和查全率. 相似文献
6.
针对均值漂移(MS)目标跟踪算法受背景环境变化干扰较大的问题,提出一种基于背景加权的多特征融合目标跟踪算法BWMMS。引入基于目标模型与目标周围背景模型差分的加权函数,细化各像素对准确描述目标的重要程度,从而提高目标模板的分辨能力。结合颜色与纹理特征进行目标跟踪,构建基于目标和目标背景区域的特征自适应融合机制,使BWMMS算法能够根据跟踪场景变化自适应调整颜色与纹理特征的权值。实验结果表明,与MS算法、HRBW算法相比,该算法对环境变化的适应性较好,能取得更鲁棒的跟踪结果,且跟踪成功率高达94.84%。 相似文献
7.
8.
9.
基于均值漂移运动目标跟踪的迭代算法,简单可靠,可以方便准确的找到一个基于内核的概率密度函数估计目标的位置。但是该算法对目标尺寸形状变化的适应能力比较差,文章提出一个改进的均值漂移算法。新算法同时估计目标的位置和用协方差矩阵来描述的目标的形状,能够处理对象的角度和形状大小发生变化时的跟踪问题,运用新的算法实现以颜色直方图为基础的非刚性目标跟踪算法。实验表明,该改进的算法在不同环境下跟踪目标的鲁棒性很好,尤其对跟踪目标的形状和尺寸的改变,具有很强的适用性。 相似文献
10.
11.
针对传统的基于颜色特征目标跟踪算法在一些复杂场景中存在的跟踪不稳定性,提出一种基于颜色 纹理特征的目标跟踪算法;在传统的基于颜色Mean shift的目标跟踪算法中加入纹理特征,在提取目标颜色特征的同时提取目标的纹理特征,并且采取串接原则,在搜索目标新位置时仍然沿用传统的基于颜色的均值漂移跟踪算法,但在每一次迭代过程搜寻目标最佳的位置点即特征相似最大的区域时,利用纹理特征来实现,并且采用八邻域搜索法(候选区域周围扩大八个大小相等的区域)来解决部分遮挡的问题。通过对比实验表明,该算法在复杂场景中表现出的实时性和鲁棒性较好。关键词: 相似文献
12.
13.
14.
Emerging significance of person-independent, emotion specific facial feature tracking has been actively tracked in the machine vision society for decades. Among distinct methods, the Constrained Local Model (CLM) has shown significant results in person-independent feature tracking. In this paper, we propose an automatic, efficient, and robust method for emotion specific facial feature detection and tracking from image sequences. A novel tracking system along with 17-point feature model on the frontal face region has also been proposed to facilitate the tracking of human basic facial expressions. The proposed feature tracking system keeps patch images and face shapes till certain number of key frames incorporating CLM-based tracker. After that, incremental patch and shape clustering algorithms is applied to build appearance model and structure model of similar patches and similar shapes respectively. The clusters in each model are built and updated incrementally and online, controlled by amount of facial muscle movement. The overall performance of the proposed Robust Incremental Clustering-based Facial Feature Tracking (RICFFT) is evaluated on the FGnet database and the Extended Cohn-Kanade (CK+) database. RICFFT demonstrates mean tracking accuracy of 97.45% and 96.64% for FGnet and CK+ database respectively. Also, RICFFT is more robust by minimizing average shape distortion error of 0.20% and 1.86% for FGnet and CK+ (apex frame) database, as compared with classic method CLM. 相似文献
15.
目的 为克服单一颜色特征易受光照变化影响,以及图像的空间结构特征对目标形变较为敏感等问题,提出一种结合颜色属性的分层结构直方图。方法 首先,鉴于使用像素灰度值对图像进行分层易受光照变化影响,本文基于颜色属性对图像进行分层,即将输入的彩色图像从RGB空间映射到颜色属性空间,得到11种概率分层图;之后,将图像中的每一个像素仅投影到其概率值最大的分层中,使得各分层之间像素的交集为空,并集为整幅图像;对处理后的每一个分层,通过定义的结构图元来统计像素分布情况,得到每一分层的空间分布信息;最后,将每一分层的像素空间分布信息串联作为输入图像的分层结构直方图,以此来表征图像。结果 为证明本文特征的有效性,将该特征用于图像匹配和视觉跟踪,与参考特征相比,利用本文特征进行图像匹配时,峰值旁瓣比均值提升1.347 9;将本文特征用于视觉跟踪时,采用粒子滤波作为跟踪框架,成功率相对上升4%,精度相对上升4.6%。结论 该特征将图像的颜色特征与空间结构信息相结合,有效解决了单一特征分辨性较差的问题,与参考特征相比,该特征具有更强的分辨性和鲁棒性,因此本文特征可以更好地应用于图像处理应用中。 相似文献
16.
17.
针对传统基于Haar-like特征的on-line boosting跟踪算法(HBT)需要产生大规模随机特征、占用大量计算资源和存储空间的缺点,提出结合方向纹理熵的Haar-like特征在线boosting跟踪算法(HBTT)。HBTT算法利用灰度共生矩阵的熵获得目标纹理的方向信息,在此基础上有针对性地产生具有方向纹理信息的Haar-like特征,从而可有效避免无效随机特征的产生,减小特征池容量;更进一步,可根据目标纹理的复杂程度自动调整特征数量,使得算法更灵活。在跟踪过程中,在线学习模块可以使错误率较高的特征被结合了目标纹理方向信息的Haar-like特征所替换。与HBT算法比较,HBTT算法的跟踪误差降低了10%以上;在相同特征池容量下,置信度提高了2%以上。实验结果表明,该算法不仅具有较高的鲁棒性,而且在跟踪效率和性能上都有所提高。 相似文献
18.
基于运动与颜色直方图的粒子滤波目标跟踪 总被引:1,自引:2,他引:1
吴雪刚 《计算机工程与设计》2008,29(15)
提出了基于运动目标历史速度和历史运动曲线的改进的粒子滤波器设计方案.为了解决运动中的遮挡问题,在粒子评价过程中引入"运动动量因子"来保持在高速运动下原来方向粒子的健壮性,提高了粒子跟踪的准确度.相应的为运动目标建立颜色模型,进一步增加了跟踪的准确性.实验结果表明,跟踪的效果优于基本粒子滤波器. 相似文献