首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对α -烯烃聚合制备润滑油基础油的新型催化剂进行了研究。考察了NiSO4 /γ -Al2 O3、NiSO4 /β -沸石、NiSO4 /SiO2 对α -烯烃催化作用及表现出的性能。并根据新型聚合催化剂的研究和XRD、溴价分析 ,对聚合反应的工艺条件进行了考察。反应结果表明 ,NiSO4 /β -沸石催化剂具有反应活性高 ,选择性、稳定性、再生性好及反应温度、反应压力低等优点 ,是较好的新一代α -烯烃聚合催化剂。同时载体经水蒸气预处理 ,酸性有所变化 ,催化剂的各项性能均有显著的提高 ,产品具有较好的粘度和较低的溴价。最佳反应条件 :反应温度 1 70℃ ,反应压力 4 .0~ 5.0MPa ,体积空速 0 .5h  相似文献   

2.
采用固定流化床烯烃叠合反应装置 ,研究了软蜡裂解多烯烃生产润滑油齐聚油的最佳工艺条件。结果表明用 β沸石为载体经水蒸气预处理后 ,浸NiSO4所得催化剂 ,反应温度为 170℃ ,反应压力 4 0~5 0MPa ,体积空速 0 5h-1时 ,润滑油齐聚溴价最低 ,齐聚油经蒸馏后 ,收率达 6 8% ,该产品进一步研究可进行工业化。  相似文献   

3.
改性Hβ沸石催化剂的性能对混合烯烃聚合反应的影响   总被引:2,自引:0,他引:2  
用浸渍法制备了不同硅铝比的Hβ沸石浸Ni的烯烃齐聚反应催化剂 ,利用X射线衍射仪、红外光谱测定仪对此催化剂的C5~C1 4烯烃齐聚反应的性能进行了表征与比较 ,结果表明 ,此催化剂活性高、选择性好、对环境无污染 ,经载NiSO4 改性、水蒸气处理过的Hβ沸石的烯烃齐聚反应活性明显提高 ,并且载NiSO4 为 1 5 %改性的Hβ沸石催化剂具有更为良好的催化性能 ,此反应的最佳操作温度为 1 60~ 2 2 0℃。研究发现 :在Hβ沸石适当引入NiSO4 ,不仅使酸强度提高 ,而且酸类型也发生了变化 ,B酸有较大幅度的下降 ,L酸大为增加 ,使得催化活性明显提高。  相似文献   

4.
用煤基混合烯烃分离出的C12-C16烯烃馏分为原料,在氮气保护下用AlCl3催化聚合,研究聚合温度、聚合时间、聚合压力及催化剂质量对聚α烯烃合成油收率的影响,确定最佳聚合反应条件,并对产物进行物性分析。结果表明,冷阱油中C12-C16烯烃的蒸出温度在214~274 ℃。在聚合温度为137 ℃、聚合时间为40 min、聚合压力为4.0 MPa和催化剂质量为10 g的条件下,聚合反应收率为84.57%,所得聚α烯烃合成油在40 ℃时的运动黏度为32.53 mm2/s,闪点为221 ℃,凝点为-53 ℃,溴值为9.6 g(Br)/(100 g)。  相似文献   

5.
应用新型SiO2/γ-Al2O3催化剂制润滑油基础油   总被引:10,自引:3,他引:10  
研究了新型α-烯烃聚合制润滑油基础油的催化剂。在N2保护下,用Cl2氯化SiO2/γ-Al2O3作为催化剂。在最佳实验条件下,考察SiO2和γ-Al2O3的摩尔比,Cl2和N2的体积比,氯化温度和氯化时间对催化剂催化性能的影响。以产品的运动粘度(20℃)的大小为标准进行评价。结果表明,该催化剂的制备最佳条件为:SiO2和γ-Al2O3的摩尔比为1,Cl2和N2体积比为0.2,500℃氯化4h。由于加入了SiO2,催化剂不仅保留了AlCl3对烯烃聚合反应表现出的较高的活性,而且克服了单独使用AlCl3时的强腐蚀性和反应过于剧烈等方面的不足。通过合成油的运动粘度和溴价等重要评价指标对催化剂进行了评价。  相似文献   

6.
研究了新型α—烯烃聚合制润滑油基础油的催化剂。在最佳实验条件下考察了活性组分负载量、磷酸含量、水蒸气处理时间及H2还原时间的不同对催化性能的影响。结果表明,当活性组分Ni、Cr质量比为4时,产品运动粘度(20℃)最大,向载体中添加酸性组分,增强了其对Cr、Ni/γ—Al2O3—SiO2催化剂的调变作用,当酸体积分数为7%时催化剂活性最高。水蒸气处理时间不同对催化剂活性影响不同,但与未处理的催化剂性能相比较,活性有了显著提高,当水蒸气处理时间为40h时,产品的运动粘度达到最大。氢气还原处理可将催化剂中负栽的金属还原为较低价态,增强了催化剂的活性,同时该催化剂再生性能较好,再生后催化剂的稳定性及寿命均优于新鲜催化剂。  相似文献   

7.
利用微湿空气法对SiO2/γ-Al2O3催化剂进行处理,将其用于制取润滑油基础油。利用BET法对催化剂的结构进行测定,考察了微湿空气处理催化剂的最佳处理条件及活性组分的最佳负载量,在微型反应装置上应用该催化剂进行了α-烯烃聚合反应实验。结果表明,采用温度为170℃,压力为6.0 MPa,体积空速为0.5 h-1的最佳聚合工艺条件,微湿空气温度为45℃,处理温度为800℃,活性组分的质量分数为12%时,催化剂具有较好的催化活性和优良的经济性。润滑油的运动粘度为38.19 mm2/s,溴价为5.78 g(Br)/100 g,凝点为-43.0℃。  相似文献   

8.
研究了新型α-烯烃聚合制润滑油基础油的催化剂。在最佳实验条件下考察了活性组分负载量、磷酸含量、水蒸气处理时间及H_2还原时间的不同对催化性能的影响。结果表明,当活性组分Ni、Cr质量比为4时,产品运动粘度(20℃)最大,向载体中添加酸性组分,增强了其对Cr、Ni/r-Al_2O_3-SiO_2催化剂的调变作用,当酸体积分数为7%时催化剂活性最高。水蒸气处理时间不同时催化剂活性影响不同,但与未处理的催化剂性能相比较,活性有了显著提高,当水蒸气处理时间为40h时,产品的运动粘度达到最大。氢气还原处理可将催化剂中负载的金属还原为较低价态,增强了催化剂的活性,同时该催化剂再生性能较好,再生后催化剂的稳定性及寿命均优于新鲜催化剂。  相似文献   

9.
本文采用尾气色谱系统,以 HZSM-5沸石和用 Fe,K 及γ-Al_2O_3改性的 HZSM-5沸石为催化剂,考察它对甲醇转化为低碳烯烃和芳烃的反应性能.结果表明,以 HZSM-5/γ-Al_2O_3复合催化剂的活性和选择性最好,总烯烃收率达到81.2%,其中乙烯收率为43.81%.用电导法测定了 HZSM-5/γ-Al_2O_3沸石表面酸性,初步探讨甲醇转化反应与催化剂表面酸性的联系.此外,研究了反应温度、系统压力、空速和反应器段数对甲醇转化反应产物组成的影响.  相似文献   

10.
制备了一种新型催化裂化干气聚合反应生成蜡状物的催化剂,聚合的烯烃分子在一定的温度、压力和引发剂或催化剂作用下,通过自身聚合成聚合物,聚合成烯烃配位聚合的活性中心是催化剂中含有烷基的过渡元素的空d轨道,是由碳碳双键与配位催化剂活性中心的空d轨道进行配位,然后发生移位,使链得到增长,进而生成大分子。以MgCl2为载体(ω(Ti)=1.5%),经过加酯研磨后制得的催化剂,在反应温度90℃,压力在7MPa,排气间隔1.5h,其催化效率达70%以上,同时进行了X光衍射分析,该催化剂再生性能好,催化寿命可达150h。  相似文献   

11.
综述了ⅣB族茂金属/MAO均相体系催化烯烃聚合工艺研究进展。包括从中心金属原子及其周围配体电子效应和空间效应等结构方面,阐述了各种催化剂对聚合活性和聚合产物性能的影响;详细讨论了反应温度、助催化剂/主催化剂摩尔比、氢气含量、主催化剂浓度、反应时间等工艺每件对烯烃聚合性能的影响。  相似文献   

12.
制备了Ag/Hβ醚化催化剂,并在小型固定床反应装置上采用制备的催化剂进行了催化裂化轻汽油醚化试验。考察了Ag/Hβ沸石催化剂的制备条件对催化性能的影响以及反应温度、空速、醇烯比、压力对醚化反应的影响。实验结果表明,随着Ag负载量的增加,Ag/Hβ催化剂的醚化活性略有增加,当Ag负载的质量分数为2%时达到最大值,此后继续增加Ag负载量,催化剂的醚化活性下降。随着焙烧温度的增加,催化剂的活性逐渐增加,在焙烧温度450℃时达到最大值。采用Ag(2%)/Hβ催化剂具有较好的醚化活性。在最佳反应条件(温度为70℃、压力为0.8MPa、空速为1.0h-1、醇烯比为1.0)下,叔碳烯烃的转化率可达到56.27%。负载后的催化剂具有活性高、不易失活等优点。  相似文献   

13.
低碳烯烃芳构化催化剂与工艺进展   总被引:4,自引:0,他引:4  
介绍了ZSM-5沸石及其改性催化剂用于低碳烯烃C2^=-C5^=的芳构化性能,结果在ZSM-5沸石中加入一些金属如Zn,Ga,Pt,Ni,Cd等得到的改性催化剂可直接将烯烃及其混合物转化为芳烃,且芳烃收率,选择性都大有改善,各种金属及其引入方式对烯烃芳构化的影响不一样,催化剂的制备方法中,以离子交换法最佳,其次是浸渍法,最后是混合法,金属的引入量有最佳值,如ω(Cd)≤0.8%时效果最佳,此外对各种操作条件如反应温度,空速,载气等方面进行了论述,认为反应温度以350-550℃为宜,空速不能太大,以H2为载气比N2为载气好,探讨了烯烃芳构化的反应机理,并对其工艺用于烯烃汽油改质的工业应用前景作了预测。  相似文献   

14.
制备了一种新型新型催化裂化干气聚合反应生成蜡状物的催化剂,聚合的烯烃分子在一定的温度、压力和或催化剂作用下,通过自身聚合成聚合物,聚合成烯烃配位聚合的活性中心是催化剂中含有烷基的过渡元素的空d轨道,是由碳碳双键与配位催化剂活性中心的空d轨道进行配位,然后发生移位,使锭得到增长,进而生成大分子。以MgCl2为载体,经过加酯研磨后制得的催化剂,在反应温度90℃,压力在7MPa,排气间隔1.5h,其催经  相似文献   

15.
ZSM-5沸石和L沸石对FCC汽油芳构化降烯烃性能比较   总被引:5,自引:0,他引:5  
临氢条件下,以全馏分FCC汽油为原料,在固定床连续微反应装置上对HZSM-5沸石催化剂和HL沸石催化剂的芳构化降烯烃反应性能进行了评价。用气相色谱仪对原料和产品进行了分析,并用X射线荧光光谱法,XRD,BET和IR等手段对沸石催化剂进行表征。结果表明,两种催化剂在反应活性一致的情况下,FCC汽油在HZSM-5催化剂上的烯烃饱和率达30.31%,芳烃体积分数由20.15%增加到31.55%;而在HL催化剂上的烯烃饱和率达15.25%,芳烃体积分数增加到28.72%。在两者反应条件一致的情况下,HZSM-5沸石催化剂不但具有较好的烯烃芳构化活性,同时还表现出了良好的活性稳定性。这种反应性能的差异主要是由于HZSM-5沸石和HL沸石的酸性特征、表面积(BET)和微孔体积不同所造成的。  相似文献   

16.
改性β沸石催化剂上混合C4的气相烷基化反应研究   总被引:1,自引:0,他引:1  
对烷/稀比较小(4.5:1)的混合C4为原料的气相烷基化反应进行了研究,考察了Hβ沸石及改性后制得催化剂上反应条件及改性方法对反应性能的影响,结果表明随着反应温度的升高三甲基戊烷/二甲基己烷值增大,这说明催化剂上的烷基化反应选择性和氢转移能力增加;进料空速增大C8产物选择性增大,但丁烯转化率降低;经超强酸改性后制得的SO^2-4-Fe2O3/Hβ-Al2O3催化剂具有较高的活性,烯烃转化率平均为13.88%;加入La2O3R后催化剂的烷基化反应稳定性增加。  相似文献   

17.
介绍了ZSM - 5沸石及其改性催化剂用于低碳烯烃C2 =~C5=的芳构化性能 ,结果表明在ZSM - 5沸石中加入一些金属如Zn、Ga、Pt、Ni、Cd等得到的改性催化剂可直接将烯烃及其混合物转化为芳烃 ,且芳烃收率、选择性都大有改善。各种金属及其引入方式对烯烃芳构化的影响不一样 ,催化剂的制备方法中 ,以离子交换法最佳 ,其次是浸渍法 ,最后是混合法。金属的引入量有最佳值 ,如ω(Cd)≤ 0 .8%时效果最佳。此外对各种操作条件如反应温度、空速、载气等方面进行了论述 ,认为反应温度以 35 0~ 5 5 0℃为宜 ,空速不能太大 ,以H2 为载气比N2 为载气好。探讨了烯烃芳构化的反应机理 ,并对其工艺用于烯烃汽油改质的工业应用前景作了预测  相似文献   

18.
采用水热合成法制备了CuO-ZnO/SAPO-34复合催化剂,以CuO-ZnO为甲醇合成催化剂,以SAPO-34分子筛为甲醇脱水催化剂,研究了催化二氧化碳加氢一步法制备低碳烯烃的方法。通过XRD、TEM、SEM、IR和固定床反应活性评价,系统地考察了复合催化剂的物化性质和催化反应性能。在反应温度270℃、压力3.5MPa、n(H2)∶n(CO2)=4∶1、体积空速为1 600h-1的反应条件下,该催化剂表现出较好的活性和选择性。CO2的转化率可达到18.71%,乙烯、丙烯的产率分别达到9.27%和4.76%。  相似文献   

19.
采用多种方法对HZSM -5 进行改性, 以沸程75 ~ 120 ℃的催化裂化汽油馏分为原料, 在实验室连续固定床反应装置上考察了采用不同方法改性的HZSM -5 催化剂的芳构化反应性能。实验结果表明, 催化剂的稳定性顺序为HZSM -5相似文献   

20.
β沸石分子筛的改性及其醚化性能   总被引:6,自引:2,他引:4  
分别用钼、银对Hβ沸石分子筛进行改性,在小型固定床反应装置上进行了催化裂化轻汽油醚化试验。研究改性催化剂的催化活性和稳定性,考察了改性催化剂制备条件和反应温度、醇烯摩尔比、空速对醚化反应的影响。实验结果表明,银和钼负载量不同,制备的改性催化剂醚化活性不同,其中改性沸石负载钼的质量分数为3%时醚化活性最高,总叔碳烯烃转化率为57.47%,比Hβ沸石原粉的高出6个百分点。最佳反应条件为:温度70~80℃、空速为1.0h-1和醇烯摩尔比为1.05。经过改性的Hβ沸石催化剂的稳定性有所提高,载钼的质量分数为3%时改性的Hβ沸石催化剂的稳定性最好,经过400h的反应,反应物中活性烯烃的转化率由57 87%下降到55 39%,具有一定工业开发价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号