首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Activation of brain microglial cells can be subdivided into a number of stages. Early stages likely are proliferation and migration to sites of cell damage. These two stages have been studied exemplarily on the IL-3 receptor beta-subunit and on the CC-chemokine receptor 5 using molecular biological methods. First, IL-3 receptor beta-subunit cDNA has been cloned in full length from rat microglia. Since cultured microglia are already activated to some extent, mRNA of this subunit has been detected in the isolated cells, but was absent in normal rat brain. Lipopolysaccharide (LPS) increased this mRNA in the cultured cells and LPS injected into the circulation of rats induced the mRNA specifically in brain microglia as revealed by in situ hybridizations. Next, we obtained partial cDNAs of receptor-coupled protein tyrosine kinases JAK 1 and JAK 2. These mRNAs were present both in cultured microglia and in rat brain, but were not influenced by LPS. Finally, a full-length cDNA of the rat chemokine receptor 5 has been obtained by PCR methodology. Its mRNA was increased by administration of LPS both in cultured microglia and in vivo. It is expected, that further investigations on these receptors could help to develop improved strategies to combat chronic inflammatory events in the brain.  相似文献   

2.
3.
4.
We examined whether the cytokine IL-12 could be induced locally in the brain or in glial cell cultures following LPS treatment. In the brain, expression of IL-12 p35 mRNA was constitutive and did not alter following i.p. injection of LPS. In contrast, IL-12 p40 mRNA was only detectable in the brain of mice given two staggered injections of LPS. Dual labeling in situ analysis revealed IL-12 p40 RNA-positive cells scattered throughout the brain parenchyma, with a small number of these cells being identified as astrocytes, while the majority of IL-12 p40 RNA-expressing cells appeared to be microglia. In cultured microglia or astrocytes, LPS and to a much lesser degree IL-1beta, but not IFN-gamma or TNF-alpha, induced the expression of IL-12 p40 mRNA. Numerous glial fibrillary acidic protein-immunopositive cells colabeled for IL-12 p40 RNA; indicating that LPS-stimulated astrocytes expressed IL-12 in vitro. Immunoblot analysis of lysates from LPS-treated astrocytes revealed the presence of multiple species of 40, 43, 75, and 120 kDa containing the IL-12 p40 protein. Finally, secretion of the IL-12 p75 heterodimer was detectable by ELISA from astrocytes treated with LPS plus IFN-gamma, but not with LPS alone. The findings indicate that IL-12 gene expression can be activated in the brain, with the resident glial cells being a prodigious source of this cytokine. The localized production of IL-12 may have a significant impact on the development of cell-mediated immune responses within the central nervous system.  相似文献   

5.
6.
The regulatory effects of the proinflammatory cytokines, interleukin-1alpha (IL-1alpha) and tumor necrosis factor-alpha (TNF-alpha) were investigated on CD4 and Mac-1 expression in mouse microglial cultures. The identity of the microglia in cultures was confirmed by multiple indices including morphology, uptake of acetylated low-density lipoprotein and lectin RCA 120 staining. Microglia growing on a monolayer of astrocytes (astrocyte-supported microglia) were both CD4- and Mac-1 positive (out of 94.5 % Mac-1-positive cells, 85.3% were also CD4 positive). When astrocyte-supported microglia were replated directly onto culture dishes (plate-supported microglia), the percentage of CD4- and Mac-1-positive cells decreased to 12-29 and 20-25% respectively. The addition of IL-1alpha or TNF-alpha to plate-supported microglia led to an upregulation of Mac-1 expression in a time- and dose-dependent manner with different EC50s (0.5 ng/ml for IL-1alpha and 2 ng/ml for TNF-alpha) but exhibited similar time-to-peak responses (over 12 h). The addition of IL-1alpha, but not TNF-alpha, also led to an increase in CD4 expression on plate-supported microglia with a similar dose response and time course. IL-1alpha treatment gave rise to an increase in the level of CD4 mRNA as assessed by RT-PCR. The possibility that cell proliferation was responsible for the observed effects on microglia was excluded by an analysis of 3H-thymidine incorporation. Our results suggest that cultured mouse microglia express CD4 molecules which can be upregulated by IL-1alpha while Mac-1 can be upregulated by both IL-1alpha and TNF-alpha.  相似文献   

7.
8.
In this work, we studied the expression of type II nitric oxide synthase (NOS) in primary cultures of human astrocytes and microglia. Cytokine-activated human fetal astrocytes expressed a 4.5-kb type II NOS mRNA that was first evident at 8 h, steadily increased through 48 h, and persisted through 72 h. The inducing signals for astrocyte NOS II mRNA expression were in the order IL-1beta + IFN-gamma > IL-1beta + TNF-alpha > IL-1beta. SDS-PAGE analysis of cytokine-stimulated astrocyte cultures revealed an approximately 130-kDa single NOS II band that was expressed strongly at 48 and 72 h (72 h > 48 h). Specific NOS II immunoreactivity was detected in cytokine-treated astrocytes, both in the cytosol and in a discrete paranuclear region, which corresponded to Golgi-like membranes on immunoelectron microscopy. In human microglia, cytokines and LPS failed to induce NOS II expression, while the same stimuli readily induced TNF-alpha expression. In cytokine-treated human astrocytes, neither NOS II mRNA/protein expression nor nitrite production was inhibited by TGF-beta, IL-4, or IL-10. In contrast, IL-1 receptor antagonist exerted near complete inhibition of NOS II mRNA and nitrite induction. Monocyte chemoattractant peptide-1 mRNA was induced in TGF-beta-treated astrocytes, demonstrating the presence of receptors for TGF-beta in astrocytes. These results confirm that in humans, cytokines stimulate astrocytes, but not microglia, to express NOS II belonging to the high output nitric oxide system similar to that found in rodent macrophages. They also show that the regulation of type II NOS expression in human glia differs significantly from that in rodent glia. A crucial role for the IL-1 pathway in the regulation of human astrocyte NOS II is shown, suggesting a potential role for IL-1 as a regulator of astrocyte activation in vivo.  相似文献   

9.
Using mRNA differential display technique, we have found a differentially expressed band in rat brain, designated HAP2G1, which was the strongest one induced in response to peripheral administration of lipopolysaccharide (LPS). Sequence analysis showed that HAP2G1 cDNA is the rat homologue of the human alpha-chemokine IP-10. Using RT-PCR technique and in situ hybridization, we demonstrate that IP-10 mRNA was expressed only in brain tissue of rats treated with LPS and not in control brain tissue. Using semi-quantitative PCR, we found that both cultured astrocytes and microglia express IP-10 mRNA after treatment with LPS. LPS-induced IP-10 mRNA reached peak levels in rat brain and in cultured microglia at approximately 3 h after treatment with LPS. At 10 h, IP-10 mRNA was markedly decreased, and at 24 h it was low but still detectable by PCR or in situ hybridization. In contrast to unstimulated microglia, unstimulated astrocytes constitutively expressed IP-10 mRNA at a low level. Increased IP-10 expression could possibly be involved in the microglia response to inflammatory stimuli in vivo.  相似文献   

10.
IL-8 involvement in neutrophil activation and chemotaxis may be important in inflammatory responses within the central nervous system, secondary to meningitis, encephalitis, and traumatic injury. The source of IL-8 within the brain during these inflammatory processes, however, is unknown. To explore the role of microglia in the production of IL-8, human fetal microglia, which are the resident macrophages of the brain, were treated with LPS and pro- and anti-inflammatory cytokines to determine their effects on IL-8 production. We found that IL-8 protein levels increased in response to LPS or IL-1 beta, or to TNF-alpha, which also corresponded to elevated IL-8 mRNA levels by RT-PCR. Pretreatment with IL-4, IL-10, or TGF-beta 1 potently inhibited the stimulatory effects of these proinflammatory agents. These findings indicate that human microglia synthesize IL-8 in response to proinflammatory stimuli, and that anti-inflammatory cytokines down-regulate the production of this chemokine. These results may have important therapeutic implications for certain central nervous system insults involving inflammation.  相似文献   

11.
Adhesion of Langerhans cells (LC) to keratinocytes is mediated by E-cadherin. IL-1, TNF-alpha, and LPS mobilize LC from epidermis and presumably attenuate LC-keratinocyte adhesion. To determine whether these mediators modulated LC E-cadherin-dependent adhesion directly, we characterized their effects on LC-like dendritic cells expanded from murine fetal skin (FSDDC). FSDDC were propagated from day 16 C57BL/6 fetal skin and isolated as aggregates (FSDDC-A) in which homophilic adhesion was mediated by E-cadherin. IL-1, TNF-alpha, and LPS induced dissociation of FSDDC-A that began within 4 to 8 h and was complete within 20 h. Anti-IL-1RI mAb inhibited disaggregation caused by IL-1alpha and IL-1beta, but not that induced by TNF-alpha or LPS. Anti-TNF-alpha mAb inhibited the effect of TNF-alpha and LPS, but not that caused by IL-1alpha or IL-1beta. Flow cytometry of FSDDC-A revealed that IL-1, TNF-alpha, and LPS induced increased expression of MHC class II, CD40, and CD86 and decreased E-cadherin expression that was temporally related to dissociation of aggregates. IL-1 and TNF-alpha caused a rapid reduction in FSDDC E-cadherin mRNA levels that preceded the decrease in E-cadherin surface expression. These results demonstrate that cytokines that induce LC emigration in vivo act directly on LC-like cells in vitro, reduce E-cadherin mRNA levels, down-regulate E-cadherin surface expression, and induce a loss of E-cadherin-mediated adhesion.  相似文献   

12.
Cytokines are hormone-like proteins which mediate and regulate inflammatory and immune responses. The purpose of this study was to investigate the effect of lipopolysaccharide (LPS) and inflammatory cytokines on regulation of interleukin-6 (IL-6) production by human gingival fibroblasts (HGF). The HGF cell lines used in this study, H-CL and F-CL, were established by the explant technique from healthy gingival tissue. Cultured cells were grown to confluency and incubated with various concentrations of LPS from Escherichia coli or Porphyromonas gingivalis or with the recombinant human cytokine tumor necrosis factor alpha (TNF-alpha), IL-1alpha, or IL-1beta. Culture supernatants were collected at various times and assessed for IL-6 production by enzyme-linked immunosorbent assay. Total RNA was isolated from the harvested cells and used to assess levels of IL-6 mRNA by the RNase protection assay. Both LPS preparations induced IL-6 production (1 to 4 ng of IL-6 per ml) by both HGF cell lines. Although TNF-alpha stimulated IL-6 production by HGF, > 10-fold-larger amounts were induced with IL-1alpha and IL-1beta. Furthermore, the addition of both IL-1alpha and TNF-alpha to cultured cells resulted in approximately 600- to 800-fold-higher levels of IL-6 than seen in control cultures, suggesting that these cytokines synergistically induced IL-6 production by HGF. IL-6 message in cultured cells was upregulated 20-fold by TNF-alpha, 1,000-fold by IL-1alpha and IL-1beta, and 1,400-fold by IL-1alpha plus TNF-alpha. IL-1alpha and TNF-alpha alone upregulate IL-6 production in a dose- and time-dependent fashion. The addition of IL-1alpha and TNF-alpha to cultured HGF cells resulted in a synergistic induction of IL-6 after 8 h of incubation and when greater than 10 pg of this combination per ml was used. Our studies show that inflammatory cytokines are hundreds of times more potent than LPS in stimulating IL-6 production by HGF.  相似文献   

13.
14.
In this study, cytokine mRNA profiles in microglia from newborn rats were detected by in situ hybridization. Under natural culture conditions, microglia expressed the immunosuppressive transforming growth factor-beta 1 (TGF-beta 1) and interleukin (IL) 10 to a greater degree than the pro-inflammatory cytokines IL-1 beta, IL-6, IL-12, interferon-gamma (IFN-gamma) and TNF-alpha. High TGF-beta 1 and IL-10 levels could reflect one mechanism for immune privilege within the CNS under physiological conditions. Stimulation of microglia with LPS or IFN gamma resulted in strong up-regulation of proinflammatory cytokines, while TGF-beta 1 and IL-10 were down-regulated. These effects of LPS or IFN-gamma are anticipated to reflect immunopathogenic processes within the CNS.  相似文献   

15.
Experimental allergic neuritis (EAN) is a T cell mediated animal model of Guillain-Barré syndrome, characterized by inflammation and demyelination of the peripheral nervous system (PNS). To study the involvement of immunoregulatory cytokines, we induced EAN in Lewis rats by immunizing with bovine PNS myelin (BPM) and Freund's complete adjuvant. mRNA expression of the cytokines IL-1beta, IL-6, IL-10, IL-12, TNF-alpha and TNF-beta, and the cytolytic effector molecule cytolysin was examined in lymph node mononuclear cells (MNC) over the course of EAN by in situ hybridization after culture without antigen and in the presence of BPM, the myelin P2 protein, the control antigen acetylcholine receptor, or the mitogen PHA. Three patterns of cytokine mRNA expressing MNC in relation to clinical EAN could be distinguished: (i) IL-1beta mRNA expressing cells peaked already on day 3 post immunization (p.i.), and BPM- and P2-reactive TNF-alpha, and BPM-reactive IL-6 mRNA expressing cells were also detected already on day 7 p.i., i.e., before onset of clinical EAN; (ii) BPM- and P2-reactive TNF-alpha peaked together with P2-reactive TNF-beta, IL-6 and IL-12 mRNA expressing cells at height of clinical EAN, consistent with a disease-promoting role for these four cytokines; (iii) high levels of BPM- and P2-reactive IL-10 and cytolysin mRNA expressing cells were observed only during recovery (day 28 p.i.), consistent with a disease down-regulating role of IL-10 and cytolysin. The results suggest a major proinflammatory role for IL-1beta, TNF-alpha, TNF-beta, IL-6 and IL-12 and a disease down-regulating function of IL-10 as well as cytolysin in EAN.  相似文献   

16.
The effect of Neo Red Cells (NRC), liposome-encapsulated hemoglobin, on production of tumor necrosis factor alpha (TNF-alpha) and interleukin-6 (IL-6) were studied in whole blood preparations ex vivo. Venous blood was collected with heparin and incubated in a CO2 incubator. Treatment of blood samples with NRC reduced the constitutive levels of TNF-alpha and IL-6. Lipopolysaccharide (LPS) treatment for 24 h increased production of TNF-alpha and IL-6 in a dose-dependent manner. Pretreatment with NRC (5%) for 24 h markedly potentiated the LPS-induced TNF-alpha production and, that of IL-6 to a lesser extent. Northern blotting analysis of total RNA in whole blood showed that pretreatment with NRC caused a marked increase in TNF-alpha mRNA expression in response to LPS. It is concluded that NRC potentiates LPS-induced TNF-alpha and IL-6 production in whole blood ex vivo, and that the potentiating effect of NRC on LPS-induced TNF-alpha production can be attributed, at least in part, to an increase in its mRNA expression.  相似文献   

17.
To determine whether heme oxygenase-1 (HO-1) protein is induced by endogenous nitric oxide (NO) in rat glial cultures, we examined the effects of lipopolysaccharide (LPS), interferon-gamma (IFN-gamma), and NO donors such as S-nitroso-N-acetylpenicillamine (SNAP), in mixed glial cells and in vivo rat hippocampus. In cultured glial cells, treatment with LPS induced the expression of 130-kd inducible NO synthase (iNOS) after 6 h, and NO2- accumulation and enhancement of the protein level of 33-kd HO-1 after 12 h. In addition, treatment with SNAP induced HO-1 expression after 6 h. Although NOS inhibitors such as NG-nitro-L-arginine (NNA) and NG-methyl-L-arginine did not change LPS-induced iNOS expression, these inhibitors suppressed both NO2- accumulation and the enhancement of HO-1. Immunocytochemistry showed that treatment with LPS for 24 h induced iNOS immunoreactivity predominantly in ameboid microglia, while this treatment induced HO-1-immunoreactivity in both microglia and astrocytes. In in vivo rat hippocampus, microinjection of LPS plus IFN-gamma, or SNAP after 24 h also induced HO-1 immunoreactivity in reactive microglia and astrocytes. In addition, intraperitoneal administration of NNA inhibited HO-1 immunoreactivity induced by the microinjection of LPS plus IFN-gamma. These results suggest that endogenous NO production by iNOS in microglia causes autocrine and paracrine induction of HO-1 protein in microglia and astrocytes in vitro and in rat brain.  相似文献   

18.
We investigated the effectiveness of lipopolysaccharide (LPS) and muramyl dipeptide (MDP) administered into the brain to induce anorexia in acutely fasted Wistar rats allowed to refeed. We also assayed for changes in mRNA levels of IL-1 system components, TNF-alpha, TGF-beta1, glycoprotein 130 (gp 130), leptin receptor (OB-R), pro-opiomelanocortin (POMC), neuropeptide Y (NPY), glucocorticoid receptor (GR), and CRF receptor (CRF-R) in selected brain regions. The data show that LPS and MDP induced anorexia differentially during refeeding. LPS-induced anorexia was of a stronger magnitude and duration than that of MDP. RNase protection assays showed that LPS and MDP significantly increased the expression of IL-1beta, IL-1 receptor type I, and TNF-alpha mRNAs in the cerebellum, hippocampus, and hypothalamus; LPS was more potent in all cases. MDP treatment, on the other hand, induced a stronger increase in hypothalamic levels of IL-1 receptor antagonist (IL-1Ra) and TGF-beta1 mRNAs relative to LPS. In addition, competitive RT-PCR analysis showed that LPS induced an eleven-fold increase in IL-1alpha mRNA in the hypothalamus relative to vehicle. These findings suggest that LPS and MDP mediate anorexia through different cytokine mechanisms. A stronger up-regulation of anti-inflammatory cytokines (IL-1Ra and TGF-beta1) mRNA expression by MDP may be involved in the weaker MDP-induced anorexia relative to LPS. No significant changes were observed in the peptide components examined except for an up-regulation in cerebellar gp 130 mRNA and down-regulation of hypothalamic GR mRNA expression in response to LPS or MDP. This study shows that LPS and MDP induce anorexia in fasted rats allowed to refeed, and suggests an important role for endogenous cytokine-cytokine interactions.  相似文献   

19.
We investigated the effects of murine rTNF-alpha, human rIL-1 beta, and rat rIFN-gamma in various concentrations and/or combinations on inducible nitric oxide (NO) production in primary cultures of rat aortic endothelial cells. Northern blot analysis of total RNA from induced and control cultures using the cloned mouse macrophage gene of inducible NO synthase as probe as well as polymerase chain reaction using a specific primer sequence gave a positive signal for activated cells only. A RNA approximately 4.4 kb of length similar to the inducible form of NO synthase in macrophages was labeled. The concentration of nitrite as a stable reaction product of NO in culture supernatants was determined 24 h after incubation with the various cytokines. IL-1 beta alone (40 to 1000 U/ml) induced formation of increasing amounts of nitrite with increasing concentrations of IL-1 beta present. Neither TNF-alpha alone (10 to 2000 U/ml) nor IFN-gamma alone 25 to 500 U/ml) showed significant effects on nitrite production. Simultaneous incubation with low concentrations of TNF-alpha (< or = 100 U/ml) and IL-1 beta abrogated the induction effect of IL-1 beta. Conversely, addition of high concentrations of TNF-alpha (> or = 500 U/ml) led to near maximal levels of nitrite formation even at lowest IL-1 beta concentrations (40 U/ml). In addition, simultaneous incubation of endothelial cells with IFN-gamma plus IL-1 beta and/or TNF-alpha led to near maximal NO production of endothelial cells, even at lowest IFN-gamma concentrations (25 U/ml). We hypothesize that the regulating effect of TNF-alpha may in vivo help to prevent local inflammatory responses from spreading to intact sites.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号