首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 423 毫秒
1.
An (R/S)‐titanium(IV) BINOLate‐catalyzed highly enantioselective intramolecular Heck/aza‐Diels–Alder cycloaddition (IHADA) cascade was developed to prepare tetrahydropyridoindoles (tHPs) and octahydropyrazinopyridoindoles (oHPPs) from in situ generated (R/S)‐BINOL α‐phosphoryloxy carbamate ( αPPC2 ) in one pot. Chiral cooperativity between (R/S)‐αPPC2 and (R/S)‐titanium(IV) BINOLate was observed and successfully utilized for the construction of various tHPs (7 examples) and oHPPs (17 examples).

  相似文献   


2.
This article presents an optomechanical actuator, which is driven by infra red (IR) radiation. The actuator is a nanocomposite‐containing graphene platelets embedded in poly(styrene‐b‐isoprene‐b‐styrene) (SIS) matrix. 0.1 mm thick free‐standing nanocomposite films are fabricated by a simple process of solvent casting. We demonstrate that graphene/SIS nanocomposite contracts on irradiation with IR radiation under strained conditions, whereas expansion behavior was exhibited by them when no prestrain is applied. A maximum photomechanical stress of 28.34 kPa and strain upto 3.1% was obtained for these nanocomposite actuators. We have also studied the mechanical characteristics and thermal degradation of these nanocomposite actuators. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3902–3908, 2013  相似文献   

3.
Poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVDF‐co‐HFP) hollow fiber membranes were prepared by using the phase inversion method. The effect of polyethylene glycol (PEG‐600Mw) with different concentrations (i.e., 0, 5, 7, 10, 12, 15, 18, and 20 wt %) as a pore former on the preparation and characterization of PVDF‐co‐HFP hollow fibers was investigated. The hollow fiber membranes were characterized using scanning electron microscopy, atomic force microscopy, and porosity measurement. It was found that there is no significant effect of the PEG concentration on the dimensions of the hollow fibers, whereas the porosity of the hollow fibers increases with increase of PEG concentration. The cross‐sectional structure changed from a sponge‐like structure of the hollow fiber prepared from pure PVDF‐co‐HFP to a finger‐like structure with small sponge‐like layer in the middle of the cross section with increase of PEG concentration. A remarkable undescribed shape of the nodules with different sizes in the outer surfaces, which are denoted as “twisted rope nodules,” was observed. The mean surface roughness of the hollow fiber membranes decreased with an increase of PEG concentration in the polymer solution. The mean pore size of the hollow fibers gradually increased from 99.12 to 368.91 nm with increase of PEG concentration in polymer solution. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

4.
Natural rubber (NR)/poly(ethylene‐co‐vinyl acetate) (EVA) blend–clay nanocomposites were prepared and characterized. The blend nanocomposites were prepared through the melt mixing of NR/EVA in a ratio of 40/60 with various amounts of organoclay with an internal mixer followed by compression molding. X‐ray diffraction patterns revealed that the nanocomposites formed were intercalated. The formation of the intercalated nanocomposites was also indicated by transmission electron microscopy. Scanning electron microscopy, used to study the fractured surface morphology, showed that the distribution of the organoclay in the polymer matrix was homogeneous. The tensile modulus of the nanocomposites increased with an increase in the organoclay content. However, an increase in the organoclay content up to 5 phr did not affect the tensile strength, but the organoclay reduced this property when it was increased further. This study also indicated that a low silicate content dispersed in the blend matrix was capable of increasing the storage modulus of the material. The addition of the organoclay also increased the decomposition temperature of the NR/EVA blends. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 353–362, 2006  相似文献   

5.
6.
Polymerizing 1,3‐butadiene into syndiotactic 1,2‐polybutadiene with an iron(III) catalyst system has been investigated. Activity of the catalyst was affected by the type of cocatalyst alkylaluminum and the phosphorus compound as an electron donor, molar ratio of catalyst components, and their aging sequence and aging time of the catalyst. The microstructure and configuration of the polymer was decided by the catalyst components, the higher [Al]/[Fe] molar ratio tending to yield syndiotactic 1,2‐polybutadiene, while the higher [P]/[Fe] molar ratio favors the formation of amorphous 1,2‐polybutadiene. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4265–4269, 2006  相似文献   

7.
Two different hydrogels, prepared from N‐vinyl‐2‐pyrrolidone/acrylic acid (NVP/AAc) and N‐vinyl‐2‐pyrrolidone/acrylamide (NVP/AAm), were studied for the separation and extraction of some heavy‐metal ions from wastewater. The hydrogels were prepared by the γ‐radiation‐induced copolymerization of the aforementioned binary monomer mixtures. Further modification was carried out for the NVP/AAc copolymer through an alkaline treatment to improve the swelling behavior by the conversion of the carboxylic acid groups into its sodium salts. The thermal stability and swelling properties were also investigated as functions of the N‐vinyl‐2‐pyrrolidone content. The characterization and some selected properties of the prepared hydrogels were studied, and the possibility of their practical use in wastewater treatment for heavy metals such as Cu, Ni, Co, and Cr was investigated. The maximum uptake for a given metal was higher for a treated NVP/AAc hydrogel than for an untreated NVP/AAc hydrogel and was higher for an untreated NVP/AAc hydrogel than for an NVP/AAm hydrogel. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2642–2652, 2004  相似文献   

8.
Suspension polymerization expands the study of controlled radical polymerization to high conversions and is known as a method to synthesize polymers with high molecular weights. The radical block copolymerizations of styrene (S) and acrylonitrile (AN) or butyl methacrylate (BUMA) controlled by 2,2,6,6‐tetramethylpiperidine‐N‐oxyl (TEMPO) was performed in an oil/water pressure reactor system at a temperature of 125°C. TEMPO‐terminated styrene homopolymer was employed as macroinitiator. The systems were examined by varying the composition of the monomer mixture at a constant reaction time, as well as by varying the reaction time for a characteristic monomer composition to get all of the possible conversion range. The solubility effects of acrylonitrile in the suspension medium were considered. Furthermore, the yield of the reaction was improved through initiator addition by taking control of the reaction. The polymerizations could proceed under control up to a conversion of 80–90%. By using the copolymerization equations, the solubility of pure acrylonitrile in the suspension medium could be calculated and was found to be 8 wt.‐%.  相似文献   

9.
Summary: Poly(propylene) (PP)‐clay nanocomposites were prepared from unmodified montmorillonite clays (NaMMT), with poly(ethylene oxide)‐based nonionic surfactants as dispersants/intercalants/exfoliants. The primary objective of this research was to find dispersants that (a) allow PP nanocomposites to be formed by direct melt mixing; (b) are effective with unmodified clays and (c) comprise of only a minor component with respect to both the clay and the overall composition. Linear, branched, gemini and sugar‐based surfactants and structures containing poly(dimethyl siloxane) and poly(methyl methacrylate) blocks were examined. These additives were found to be effective in breaking down the clay agglomerates to tactoids, giving some expansion of the clay structure and partial exfoliation and providing substantially improved clay dispersion. The properties of the derived nanocomposites depend on the level of additive and its structure. Tensile and impact properties show significant improvement over the precursor PP. Also notable are the significantly better thermal and thermo‐oxidative stabilities, as compared to both PP and “clay alone” composites. For optimal properties, it is both necessary and desirable that the surfactant should only be a minor constituent (20–50%) of the composition, with respect to the clay. A preferred surfactant is linear PE‐block‐PEO, with a short PEO block and an alkyl chain with approximately 30 carbon atoms (C30).

  相似文献   


10.
The grafting of the methyl methacrylate (MMA) monomer onto natural rubber using potassium persulfate as an initiator was carried out by emulsion polymerization. The rubber macroradicals reacted with MMA to form graft copolymers. The morphology of grafted natural rubber (GNR) was determined by transmission electron microscopy and it was confirmed that the graft copolymerization was a surface‐controlled process. The effects of the initiator concentration, reaction temperature, monomer concentration, and reaction time on the monomer conversion and grafting efficiency were investigated. The grafting efficiency of the GNR was determined by a solvent‐extraction technique. The natural rubber‐g‐methyl methacrylate/poly(methyl methacrylate) (NR‐g‐MMA/PMMA) blends were prepared by a melt‐mixing system. The mechanical properties and the fracture behavior of GNR/PMMA blends were evaluated as a function of the graft copolymer composition and the blend ratio. The tensile strength, tear strength, and hardness increased with an increase in PMMA content. The tensile fracture surface examined by scanning electron microscopy disclosed that the graft copolymer acted as an interfacial agent and gave a good adhesion between the two phases of the compatibilized blend. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 428–439, 2001  相似文献   

11.
The epoxy/polystyrene system is characterized by a poor adhesion between the constituent phases, which determines its mechanical properties. The adhesion can be improved via blends based on epoxy resin and random copolymers, poly(styrene‐co‐allylalcohol) (PS‐co‐PA). In this work, the influence of PS‐co‐PA content and the good adhesion between the phases on the tensile properties and the fracture toughness achieved through instrumented Charpy tests have been investigated. The tensile strength and the deformation at break showed an increase in the PS‐co‐PA content while the Young's modulus remained the same. The tensile fracture surfaces revealed that the improvement of these magnitudes was mainly due to a crack deflection mechanism. Also, the fracture toughness of the blends was superior to that of the pure epoxy resin. The main operating toughening mechanism was crack deflection. The fractographic analysis showed that ~ 80% of the particles were broken, and the crack tended to divert from its original path through the broken PS‐co‐PA particles. The remaining particles were detached from the epoxy resin, and the holes left suffered plastic deformation. Analytical models were used to predict successfully the toughness due to these mechanisms. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

12.
The polypropylene‐graft‐cardanol (PP‐g‐cardanol) was prepared by reactive extrusion with polypropylene (PP) and natural renewable cardanol which could increase the interfacial energy of PP and inhibit the degradation of PP during the process of reactive extrusion and usage. In this article, PP‐g‐cardanol and polypropylene‐graft‐maleic anhydride (PP‐g‐MAH) were used as compatibilizers of the polypropylene (PP)/poly(acrylonitrile‐butadiene‐styrene) (ABS) blends. PP/ABS (70/30, wt %) blends with PP‐g‐cardanol and PP‐g‐MAH were prepared by a corotating twin‐screw extruder. From the results of morphological studies, the droplet size of ABS was minimized to 1.93 and 2.01 μm when the content of PP‐g‐cardanol and PP‐g‐MAH up to 5 and 7 phr, respectively. The results of mechanical testing showed that the tensile strength, impact strength and flexural strength of PP/ABS (70/30) blends increase with the increasing of PP‐g‐cardanol content up to 5 phr. The complex viscosity of PP/ABS (70/30) blends with 5 phr PP‐g‐cardanol showed the highest value. Moreover, the change of impact strength and tensile strength of PP/ABS (70/30) blends were investigated by accelerated degradation testing. After 4 accelerated degradation cycles, the impact strength of the PP/ABS (70/30) blends with 5 phr PP‐g‐cardanol decrease less than 6%, but PP/ABS (70/30) blends with 5 phr PP‐g‐MAH and without compatibilizer decrease as much as 12% and 32%, respectively. The tensile strength of PP/ABS (70/30) blends has a similar tendency to that of impact strength. The above results indicated that PP‐g‐cardanol could be used as an impact modifier and a good compatibilizer, which also exhibited better stability performance during accelerated degradation testing. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41315.  相似文献   

13.
Orthopedic implant failure due to bacterial infection has been a concern in bone tissue engineering. Here, we have formulated a composite made of biodegradable polymer, i.e., poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV), and silver chloride. Ag+ ions released from the AgCl/PHBV film can promote an aseptic environment by promoting inhibition of bacterial growth while maintaining bone cell growth, depending on AgCl loading. The objective of this study is to formulate AgCl/PHBV film(s) of varying composition so as to evaluate the dependence of AgCl loading in the film on antimicrobial activity and cytotoxicity. The release kinetics of silver ions from AgCl/PHBV film in aqueous and Dulbecco's Modified Eagle Medium showed similarity in the initial burst of ions during the first day of desorption followed by a gradual release of ions over extended time period. The antibacterial efficacy of AgCl/PHBV film against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa was evaluated by microbiological assay, while cytotoxicity of the film toward MC3T3‐E1 cells was determined by MTT assay. For all compositions studied, a clear zone of inhibition around AgCl/PHBV film was noticed on a modified Kirby‐Bauer disk diffusion assay. We established that MC3T3‐E1 cell attachment on AgCl/PHBV film is strongly related to loading of AgCl in the film. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45162.  相似文献   

14.
Through an unexpected CC bond migration, 2(E)‐enals were efficiently prepared highly stereoselectively in moderate to good yields via the sodium iodide/tert‐butyl(dimethyl)silyl chloride (NaI/TBSCl)‐mediated reaction of the easily available 2,3‐allenols. Based on a careful mechanistic study, including control experiments and deuterium‐labeling experiments, an electron‐withdrawing substituent group in the 4 position has been proven to be crucial and a possible mechanism has been proposed.

  相似文献   


15.
Poly(L ‐lactide) (PLLA) and poly(3‐hydrobutyrate‐co‐3‐hydroxyvalerate) (PHBV) were blended with poly(butadiene‐co‐acrylonitrile) (NBR). Both PLLA/NBR and PHBV/NBR blends exhibited higher tensile properties as the content of acrylonitrile unit (AN) of NBR increased from 22 to 50 wt %. However, two separate glass transition temperatures (Tg) appeared in PLLA/NBR blends irrespective of the content of NBR, revealing that PLLA was incompatible with NBR. In contrast, a single Tg, which shifted along with the blend composition, was observed for PHBV/NBR50 blends. Moreover NBR50 suppressed the crystallization of PHBV, indicating that PHBV was compatible with NBR50. Decrease of both elongation modulus and stress at maximum load was less significant and increase of elongation at break was more pronounced in PHBV/NBR50 blends than in PLLA/NBR50 blends. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3508–3513, 2004  相似文献   

16.
Magnesium hydroxide‐based halogen‐free flame retarded linear low‐density polyethylene (LLDPE) composites containing poly(ethylene‐co‐propylene) (EP) elastomer were prepared by a melt process and subsequently vulcanized thermally. The thermal degradation of the composites was studied using thermogravimetric (TG) analysis and real‐time Fourier transform infrared (RT‐FTIR) spectroscopy. The combustion residues from the composites were characterized by Raman spectroscopy and X‐ray photoelectron spectroscopy (XPS). The results from TG and RT‐FTIR tests show that the incorporation of a suitable amount of the elastomer into polyethylene/magnesium hydroxide composites after vulcanization increases the thermal stability. A graphite‐like char was found for the composites with EP elastomer, from Raman spectroscopy studies. XPS results indicate that there are several forms of carbon present in the combustion residues of the composites with EP elastomer, compared with only one form of carbon in the residues of the composites without the elastomer. Copyright © 2003 Society of Chemical Industry  相似文献   

17.
In a blend of two immiscible polymers a controlled morphology can be obtained by adding a block or graft copolymer as compatibilizer. In the present work blends of low‐density polyethylene (PE) and polyamide‐6 (PA‐6) were prepared by melt mixing the polymers in a co‐rotating, intermeshing twin‐screw extruder. Poly(ethylene‐graft‐polyethylene oxide) (PE‐PEO), synthesized from poly(ethylene‐co‐acrylic acid) (PEAA) (backbone) and poly(ethylene oxide) monomethyl ether (MPEO) (grafts), was added as compatibilizer. As a comparison, the unmodified backbone polymer, PEAA, was used. The morphology of the blends was studied by scanning electron microscopy (SEM). Melting and crystallization behavior of the blends was investigated by differential scanning calorimetry (DSC) and mechanical properties by tensile testing. The compatibilizing mechanisms were different for the two copolymers, and generated two different blend morphologies. Addition of PE‐PEO gave a material with small, well‐dispersed PA‐spheres having good adhesion to the PE matrix, whereas PEAA generated a morphology characterized by small PA‐spheres agglomerated to larger structures. Both compatibilized PE/PA blends had much improved mechanical properties compared with the uncompatibilized blend, with elongation at break b) increasing up to 200%. Addition of compatibilizer to the PE/PA blends stabilized the morphology towards coalescence and significantly reduced the size of the dispersed phase domains, from an average diameter of 20 μm in the unmodified PE/PA blend to approximately 1 μm in the compatibilized blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2416–2424, 2000  相似文献   

18.
Poly(4‐vinylimidazolium)s, derived from the self‐immobilization of 4‐vinylimidazoliums, with diazabicyclo[5.4.0]undec‐7‐ene (DBU) and zinc bromide (ZnBr2) are used as a highly efficient catalyst for the chemical fixation of carbon dioxide. This catalytic system has been applied for the preparation of cyclic carbonates from terminal epoxides and carbon dioxide. Many functional groups, including chloro, vinyl, ether, and hydroxy groups are well tolerated in the reactions. Moreover, the catalytic system was found to catalyze the conversion of more sterically congested epoxides which are generally considered to be challenging substrates for fabricating the cyclic organic carbonates. In addition, the disubstituted epoxides are found to react with retention of configuration. The polymer precatalyst is easily recovered and reused. A plausible reaction mechanism is proposed.

  相似文献   


19.
《Polymer Composites》2017,38(10):2237-2247
Cryogenic mechanical properties are important parameters for thermosetting resins used in cryogenic engineering areas. The hybrid nanocomposites were prepared by modification of a cyanate ester/epoxy/poly(ethylene oxide)‐block‐poly(propylene oxide)‐block‐poly(ethylene oxide) (PEO‐PPO‐PEO) system with clay. It is demonstrated that the cryogenic tensile strength, Young's modulus, ductility (failure strain), and fracture resistance (impact strength) are simultaneously enhanced by the addition of PEO‐PPO‐PEO and clay. The results show that the tensile strength and Young's modulus at 77 K of the hybrid nanocomposite containing 5 wt% PEO‐PPO‐PEO and 3 wt% clay were enhanced by 31.0% and 14.6%, respectively. The ductility and impact resistance at both room temperature and 77K are all improved for the hybrid composites. The fracture surfaces of the neat BCE/EP and its nanocomposites were examined using scanning electron microscopy (SEM). Finally, the dependence of the coefficients of thermal expansion (CTE) on the clay and PEO‐PPO‐PEO contents was examined by thermal dilatometer. POLYM. COMPOS., 38:2237–2247, 2017. © 2015 Society of Plastics Engineers  相似文献   

20.
The effects of different silica loadings and elastomeric content on interfacial properties, morphology and mechanical properties of polypropylene/silica 96/4 composites modified with 5, 10, 15, and 20 vol % of poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene) SEBS added to total composite volume were investigated. Four silica fillers differing in size (nano‐ vs. micro‐) and in surface properties (untreated vs. treated) were chosen as fillers. Elastomer SEBS was added as impact modifier and compatibilizer at the same time. The morphology of ternary polymer composites revealed by light and scanning electron microscopies was compared with morphology predicted models based on interfacial properties. The results indicated that general morphology of composite systems was determined primarily by interfacial properties, whereas the spherulitic morphology of polypropylene matrix was a result of two competitive effects: nucleation effect of filler and solidification effect of elastomer. Tensile and impact strength properties were mainly influenced by combined competetive effects of stiff filler and tough SEBS elastomer. Spherulitic morphology of polypropylene matrix might affect some mechanical properties additionally. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41486.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号