首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
植物种子油超临界流体萃取研究进展   总被引:4,自引:1,他引:3  
论述了植物种子油超临界流体萃取技术的重要性和最新发展 ,重点就植物种子油萃取研究领域内的实验研究、数学建模以及过程控制和模拟优化技术进行了评述。介绍了人工神经网络技术在超临界流体萃取过程动力学研究中的应用  相似文献   

2.
本文较详细地论述了超临界流体中质量传递原理,介绍了物质在超临界流体中的传质系数、分子扩散系数的理论关联与实验测定,为超临界萃取传质过程的研究、超临界萃取装置的设计与放大提供参考。  相似文献   

3.
在内径25mm的连续逆流超临界流体萃取筛板塔中,对超临界二氧化碳/乙醇/水和二氧化碳/异丙醇/水2种体系的流体力学特性和传质性能进行了实验研究;对实验数据进行了分析处理,得到了描述超临界流体萃取筛板塔流动特性的关联式,应用柱塞流模型对超临界流体萃取筛板塔的传质性能进行了模拟计算.  相似文献   

4.
在内径25mm的连续逆流超临界流体萃取筛板塔中,对超临界二氧化碳/乙醇/水和二氧化碳/异丙醇/水2种体系的流体力学特性和传质性能进行了实验研究;对实验数据进行了分析处理,得到了描述超临界流体萃取筛板塔流动特性的关联式,应用柱塞流模型对超临界流体萃取筛板塔的传质性能进行了模拟计算.  相似文献   

5.
超临界流体萃取动力学模型(Ⅰ)   总被引:9,自引:0,他引:9  
综述了目前用超临界流体从植物体中萃取油脂成分的萃取过程机理,建立了模型的假设条件以及不同籽油的萃取动力学模型,分析了传质过程的推动力和阻力、体积传质通量的表达式以及模型参数的计算和关联。  相似文献   

6.
根据双膜理论,建立了超临界流体填料萃取塔液相总体积传质系数关联式;依据柱塞流模型,应用超临界二氧化碳-异丙醇-水和超临界二氧化碳-乙醇-水2种实验体系在内径为25mm的塔内对金属板波和金属丝网θ环2种填料的传质性能进行了模拟计算。结果表明,本文提出的传质数学模型能较好地描述超临界流体填料萃取塔的传质性能。  相似文献   

7.
固态物料超临界CO2萃取过程的传质研究   总被引:4,自引:0,他引:4  
影响固态物料超临界CO2 萃取过程传质效率的因素很多 ,本文以菊花为原料 ,研究了原料的预处理方式、超临界CO2 流量、固态被萃取物粒径、被萃取物的装填方式等因素对传质效率的影响 ,结果表明 ,降低被萃取物粒径 ,增大超临界CO2 流体的流量 ,改变被萃取物的形状 ,降低原料的自然堆积密度、在塔内采用流体再分布器等措施可以明显提高超临界CO2 流体萃取固态物料的传质效率  相似文献   

8.
传统葡萄籽油提取存在不足,采用超临界流体萃取技术适宜用作提取。本文对超临界CO2萃取葡萄籽油的放大工艺进行了研究,其中试优化工艺参数为萃取压力25MPa,萃取温度为45℃,CO2流量为40kgCO2/h,葡萄籽油的萃取收率为8.92%,较小试有所下降。应加强节能(省气)、高效方面的研究。  相似文献   

9.
超声强化超临界流体萃取机理的研究   总被引:7,自引:0,他引:7  
从实验和理论上对超声强化超临界流体萃取的机理进行了研究。采用自行设计的内插式超声强化超临界流体萃取装置,运用数码显微成像系统和透射电镜观察了有、无超声作用下超临界流体萃取中空化测试材料和海藻细胞微观结构的前后变化,分析了超声对超临界流体萃取海藻中二十碳五烯酸(EPA)和二十二碳六烯酸(DHA)的传质和萃取率的影响,并根据声化学原理对超临界流体中附加超声场时能否产生空化现象进行了探讨。实验结果发现超声对超临界二氧化碳流体中的空化材料和海藻细胞壁不产生破坏作用,不会产生声空化效应,但提高了海藻中EPA和DHA的萃取传质效果。其实验结果与理论推导相一致。结果表明:超声强化超临界流体萃取的机理不是源于超声空化,而是超声在微环境内产生的机械波动效应和热效应。  相似文献   

10.
超临界流体萃取植物精油的研究   总被引:4,自引:0,他引:4  
超临界萃取技术是一种新兴的分离技术,本文论述了超临界流体萃取技术的重要性,对超临界流体萃取技术在植物精油提取方面的最新应用研究进行了总结,对植物精油超临界萃取的数学建模进行了综述,其中包括两相模型、多组分多孔球解吸附-溶解-扩散(DDD)模型、微分质量守恒模型等,并对各个模型的萃取机理和模型的求解方法进行了分析和论述。  相似文献   

11.
超临界二氧化碳萃取生姜油实验研究与数值模拟   总被引:1,自引:0,他引:1  
1 INTRODUCTION Supercritical fluid extraction (SFE) as an alter- native to conventional processes, such as solvent ex- traction and steam distillation for obtaining essential oils, is a novel technique especially attractive to the food, cosmetics and Pharmaceuticals industries. The extracts from SFE are free of solvent residues. In ad- dition, the process can be conducted at low tempera- ture, which is very important to preserve the quality of heat-sensitive products[1,2]. Ginger (Zing…  相似文献   

12.
Supercritical fluid extraction (SFE) is a relatively new separation technique that has received much attention in recent years. This process is an alternative to distillation or liquid extraction. Its main advantage over the conventional ones is that the dissolved extract may be completely separated from the supercritical fluid simply by decreasing the pressure. In recent years considerable effort has been devoted to the measurement of equilibrium solubility data for solids in supercritical fluids. A coal tar distillate, anthracene oil, which contains 34.46 mass‐% phenanthrene, 33.8 mass‐% anthracene, 13.89 mass‐% carbazole and other impurities, was used as the model mixture. In this study, an experimental flow‐type apparatus has been designed to determine solubility data for the main components of anthracene oil (phenanthrene, anthracene, and carbazole) as a binary, quaternary, and multi component mixture in supercritical carbon dioxide. The equilibrium solubilities were measured at 45 °C isotherm, over a pressure range of 98–200 bar. The separation of phenanthrene from anthracene oil has been also studied by supercritical carbon dioxide at different temperatures and pressure in an extracting vessel containing 27 sieve trays.  相似文献   

13.
This article reports the achievements of the micro-scale (secretory-structure-scale) mathematical modelling of essential oil isolation by supercritical carbon dioxide. Some new experimental and modelling results are presented. The improved model for the supercritical fluid extraction from the glandular trichomes (peltate glands) is introduced. According to the behavior of plant secretory structures during the extraction as well as according to the modelling results, plant material was classified according to the dominant resistance to mass transfer during the extraction process. External mass transfer was the rate limiting step in the extraction from plants with secretory ducts and secretory cavities of citrus family. In the case of extraction from secretory cells, internal diffusion was the rate limiting step. In the extraction from glandular trichomes, external mass transfer, as well as diffusion through the gland membrane influenced the process.  相似文献   

14.
超临界流体与日用化学工业   总被引:14,自引:0,他引:14  
通过阅读许多文献和实际的研究工作,总结了超临界流体萃取的原理和特点,综述了超临界前流体萃取技术在日用化工中的应用,如萃取精油,油脂和色素,并介绍了以超临界流体为介质的化学反应。  相似文献   

15.
超临界CO2萃取生姜油实验研究与数值模拟   总被引:2,自引:0,他引:2  
利用自建的超临界流体萃取实验装置,以CO2为萃取剂,考察了萃取压力、温度、流体流量及原料颗粒度等因素对生姜油累积萃取率的影响,由此确定了较佳的萃取工艺条件。基于萃取器微分单元质量守恒原理,建立了数学模型,并利用直线推动力近似理论拟合了总传质推动力及平衡吸收常数,对实验结果进行了数值模拟。  相似文献   

16.
为探讨超临界萃取技术在中草药化妆品原料研发中的现状及存在的问题,查阅了大量相关文献,并对其进行归纳、分析和总结.结果发现,趟临界萃取技术在应用于油脂、精油、多酚、甾醇及特殊功能活性成分等中草药化妆品原料时有其独特的优势,为超临界萃取技术在中草药化妆品原料研发中的进一步发展提供参考.  相似文献   

17.
《分离科学与技术》2012,47(14):2170-2178
In this work, the supercritical CO2 extraction of essential oil from Origanum Vulgare L. was investigated and modeled. An orthogonal test and ANOVA indicated that extraction pressure, extraction temperature, and extraction time had significant influence on extraction effects. Based on experiments, a mathematical model depended on mass conservation equation was established to describe and simulate supercritical CO2 extraction of essential oil from Origanum Vulgare L. The mean diameter, accumulation properties, and the inside and outside transfer properties of extracted material particles were considered in the model. The model was solved numerically with the finite difference method and Runge-Kutta method synthetically. Model estimation was validated with small scale experimental data. Moreover, the effects of extraction pressure, extraction temperature, extraction time, concentration, and the flow rate of the entrainer on mass of essential oil were investigated using the model.  相似文献   

18.
Mathematical modeling of supercritical CO2 extraction of essential oil from Echium amoenum seed was carried out. The effect of process variables such as pressure (15, 20, 25 and 30 MPa), temperature (313, 318, 323 and 328 K) and CO2 flow rate (0.6, 0.9, 1.2 and 1.5 ml/min) on the recovery of essential oil extraction was investigated in a series of experiments conducted in a laboratory scale apparatus. The chemical composition of recovered essential oil (fatty acids) was analyzed by GC-FID. The mathematical model was developed utilizing diffusion-controlled regime in the pore and film mass transfer resistances with axial dispersion of the mobile phase at dynamic conditions. Henry’s law was used to describe the equilibrium state of solid and pore fluid phases. The obtained mass transfer equations for the mobile and stationary phases were solved using the numerical explicit method of line, and the modeling predictions of oil extraction recovery were validated via comparison with experimental data. Genetic algorithm (GA) was applied to estimate the optimum value of the Henry constant. Finally, applying the validated model the extraction recovery was investigated as a function of effective variables such as dynamic extraction time and supercritical fluid temperature, pressure and flow rate. A set of optimal operating conditions were determined via modeling parametric analysis to achieve the objective function of maximum recovery.  相似文献   

19.
设计了超临界流体萃取塔系统,并对其流体力学特性和传质性能进行了研究,为工业设计提供了理论依据。在连续逆流操作的超临界填料萃取塔、筛板萃取塔和喷淋萃取塔中,应用超临界二氧化碳-异丙醇-水、超临界二氧化碳-乙醇-水两种实验体系对流体力学模型和传质模型进行了实验验证,计算结果与实验数据符合较好。  相似文献   

20.
超临界CO_2萃取烟草精油的工艺研究   总被引:1,自引:0,他引:1  
以烟草为材料,以精油提取率、新植二烯提取率、精油品质为评价指标,通过单因素实验考察夹带剂乙醇的体积分数、夹带剂流量、萃取压力、萃取温度、CO2流量、萃取时间等因素对萃取效果的影响。在此基础上,通过正交实验优选萃取工艺条件为:94%乙醇为夹带剂、夹带剂流量0.04mL·min-1、萃取压力25MPa、萃取温度50℃、CO2流量2.0L·min-1、萃取时间3.0h,在此条件下萃取的精油金黄透亮,夹带剂残留少,精油提取率为37.58mg·g-1,新植二烯提取率为4.045mg·g-1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号