首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
钱鲁阳 《现代铸铁》2005,25(5):13-19
对各种状态的奥贝球铁齿轮的弯曲疲劳强度进行了试验研究.结果表明:(1)6DF1柴油机奥贝球铁曲轴正时齿轮的弯曲疲劳强度完全能满足设计要求,安全系数可达3.56倍.(2)适当减小齿轮与曲轴的热套过盈量有利于提高奥贝球铁齿轮的极限弯曲疲劳载荷;本试验的奥贝球铁齿轮齿根脱碳层未磨掉的比齿根脱碳层磨掉的极限弯曲疲劳载荷反而高,且其效果比减小齿轮热套过盈量更明显.(3)喷丸强化能使奥贝球铁齿轮极限弯曲疲劳载荷提高31.7%~47.6%.  相似文献   

2.
钱鲁阳 《现代铸铁》2004,24(2):13-16
奥贝球铁材料的弹性模量比钢小,因而奥贝球铁齿轮工作时受到的表面接触应力比钢齿轮小。奥贝球铁材料的接触疲劳应力可达1426MPa以上,高于280hp柴油机齿轮的接触应力,因此用奥贝球铁代替调质氮化钢生产280hp柴油机齿轮是完全可能的。  相似文献   

3.
奥贝球铁是新一代的球墨铸铁,与普通球铁相比,奥贝珠铁具有较高的强度,韧性,抗点蚀疲劳,弯曲疲劳和耐磨性能。被现为70年代以来铸铁冶金的重大突破。其应用目标之一是耐磨件,如球磨机磨球,犁铧等。  相似文献   

4.
测定了奥贝球铁的室温拉伸性能、系列冲击性能、接触疲劳性能、疲劳裂纹扩展速率和应变疲劳特性,试验表明:不同加载条件下残留奥氏体对奥贝球铁强韧性的贡献是不一样的.  相似文献   

5.
结合起重机车辆的工况进行了奥贝球铁机械性能、接触疲劳性能和耐磨性能的试验表明,应用奥贝球铁代替ZG50SiMn制造起重机车轮是可行的.  相似文献   

6.
介绍和总结了奥贝球铁的不同命名方式。指出了等温淬火球铁(ADI)、奥铁球铁(Ausferrite)、贝氏体球铁等几种名称,并对其作了进一步理解和认识,可为有关方面的研究提供参考依据。  相似文献   

7.
研究了退火处理对金属型铸态奥贝球铁弯曲疲劳性能的影响。试验结果表明:(1)退火处理可提高金属型铸态奥贝球铁的抗弯曲疲劳性能,250℃保温2 h后空冷的抗弯曲疲劳性能最好,其弯曲循环周次为铸态下的2.52倍;(2)退火处理对石墨形态无明显影响,随着退火温度的升高,基体组织逐渐由下贝氏体向上贝氏体转变,残余奥氏体逐渐减少;(3)退火处理不改变奥贝球铁的疲劳断裂机理,断口中石墨剥离得越多,说明基体塑性变形能力越强,抗弯曲疲劳性能越好。  相似文献   

8.
通过奥贝球铁的单调拉伸加载、接触疲劳和应变疲劳等宏观断裂规律和微观分析,探讨其强韧化机制。  相似文献   

9.
发达国家奥贝球铁(ADI)的研究与进展   总被引:3,自引:1,他引:3  
奥贝球铁是近年来已逐步增加应用的高强度、高韧性铸铁材质。本文从其热处理工艺、组织及检测手段、合金化、奥贝球铁标准及应用等几方面,介绍了发达国家奥贝球铁的研究与进展。  相似文献   

10.
奥贝球铁具有高强度、高韧性、高硬度、良好的耐磨性以及优良的铸造性能等特点,文章详细阐述了奥贝球铁通过合金化和连续冷却控制技术,使C曲线右移,扩大贝氏体区,避开珠光体区,得到铸态含碳化物的奥贝球铁。铸态CADI首次在轧辊上研制成功,会引起轧辊行业新一轮技术变革。  相似文献   

11.
An as-cast bainite ductile iron with excellent mechanical properties and wear resistance was fabricated by alloying and centrifugal casting method, and the alloyed chemical composition was optimized by using the thermodynamic software Thermo-Calc. By using optical microscopy, transmission electron microscopy, scanning electron microscopy, and X-ray diffraction, the microstructure of the as-fabricated bainite ductile cast iron was characterized pertinent to the elements distribution in matrix and features of ferrite and retained austenite. The results of mechanical properties test show that the hardness and compressive strength of this alloyed ductile iron are 52 HRC and 2,200 MPa, respectively. The ascast bainite ductile iron possesses highly abrasive wear resistance and the reason can be ascribed to the solid solution of the elements Si, Ni, Cu, and Mn in the austenite and the formation of carbides of elements Cr and Mo. The strength of bainite ductile iron is increased by the acicular bainitic ferrite in the matrix.  相似文献   

12.
合金元素对马氏体球墨铸铁腐蚀磨损的影响   总被引:6,自引:2,他引:4  
研究了Si、Ni、Cu合金元素对球墨铸铁腐蚀磨损耐磨性的影响;结果表明,含硅量增加及添加铜、镍元素,马氏体球墨铸铁显微组织中碳化物数量减少,石墨球尺寸增大,腐蚀磨损耐磨性增加;磨损形貌观察表明,马氏体球墨铸铁腐蚀磨损机制以磨料磨损为主,腐蚀作用不明显。  相似文献   

13.
研究经准铸态贝氏体工艺处理低碳球墨铸铁冲击磨料磨损特性。采用消失模铸造工艺,经准铸态贝氏体工艺处理后,得到了贝氏体组织。冲击磨料磨损过程以冲击变形磨损为主,兼有切削磨损和凿削磨损。通过在水泥厂应用,结果表明:磨球的成本可比低铬合金铸铁磨球降低18%,而磨球的吨水泥磨耗还不到后者的80%,破球率降低了50%。  相似文献   

14.
采用三体腐蚀磨损试验方法研究了硅对低铬白口铸铁在含铜离子浆料介质中的腐蚀磨损耐磨性的影响。结果表明,当浆料介质中铜离子浓度增加时,低铬白口铸铁的腐蚀磨损耐磨性降低。而增加含硅量后的低铬白口铸铁的腐蚀磨损耐磨性将比普通白口铸铁的高。磨损表面形貌分析表明,普通低铬白口铸铁的磨损机制为磨料磨损和介质腐蚀,而硅量增加的低铬白口铸铁的磨损机制则以磨料磨损为主,伴随着腐蚀作用。  相似文献   

15.
A wear resistant intermetallic alloy consisting of TiNi primary dendrites and Ti2Ni matrix was fabricated by the laser melting deposition manufacturing process. Wear resistance of Ti2Ni/TiNi alloy was evaluated on an abrasive wear tester at room temperature under the different loads. The results show that the intermetallic alloy suffers more abrasive wear attack under low wear test load of 7, 13 and 25 N than high-chromium cast-iron. However, the intermetallic alloy exhibits better wear resistance under wear test load of 49 N. Abrasive wear of the laser melting deposition TiENi/TiNi alloy is governed by micro-cutting and plowing. Pseudoelasticity of TiNi plays an active role in contributing to abrasive wear resistance.  相似文献   

16.
Cr/C比及热处理工艺对高铬铸铁抗磨粒磨损性能的影响   总被引:4,自引:1,他引:4  
在实验室条件下,研究了Cr/C比及热处理工艺对高铬铸铁抗冲击磨粒磨损性能的影响.结果表明,在相对较低冲击载荷下,热处理态Cr28(Cr/C比为9.5)抗磨性比Cr15(Cr/C比为5.6)更好;相对中等冲击载荷下铸态Cr28白口铁比其热处理态的更耐磨.并从金相组织上分析了其原因,探讨了其磨损机制.  相似文献   

17.
通过原位生成法与铸造法相结合制备(Ti, W)C颗粒增强高铬铸铁复合材料,采用XRD、EDS、SEM等检测方法研究复合材料的反应过程、组织结构及抗三体磨损性能。研究结果表明:增强相(Ti, W)C的反应过程存在反应-融化-析出机制以及反应-固溶机制。(Ti, W)C颗粒与基体的界面为冶金结合。复合材料的抗磨损性能是其基体高铬铸铁的1.4倍,磨损机制为磨粒磨损-粘着磨损。  相似文献   

18.
童俊梅  尧军平 《铸造技术》2012,33(5):509-511
采用真空吸铸制备了三维连续镍网增强ZL109复合材料,利用M-200型摩擦磨损试验机对复合材料在干摩擦条件下的磨损行为及磨损机理进行了研究.结果表明,三维连续镍网与基体界面处生成了新相Al3Ni2;复合材料的耐磨性始终优于基体合金,且随着网络孔径的减小,复合材料的的耐磨性增强.在磨损过程中,ZL109为典型的粘着磨损,复合材料为粘着磨损和磨粒磨损同时起作用.  相似文献   

19.
A detailed review of wear resistance properties of austempered ductile iron (ADI) was undertaken to examine the potential applications of this material for wear parts, as an alternative to steels, alloyed and white irons, bronzes, and other competitive materials. Two modes of wear were studied: adhesive (frictional) dry sliding and abrasive wear. In the rotating dry sliding tests, wear behavior of the base material (a stationary block) was considered in relationship to countersurface (steel shaft) wear. In this wear mode, the wear rate of ADI was only one-fourth that of pearlitic ductile iron (DI) grade 100-70-03; the wear rates of aluminum bronze and leaded-tin bronze, respectively, were 3.7 and 3.3 times greater than that of ADI. Only quenched DI with a fully martensitic matrix slightly outperformed ADI. No significant difference was observed in the wear of steel shafts running against ADI and quenched DI. The excellent wear performance of ADI and its countersurface, combined with their relatively low friction coefficient, indicate potential for dry sliding wear applications. In the abrasive wear mode, the wear rate of ADI was comparable to that of alloyed hardened AISI 4340 steel, and approximately one-half that of hardened medium-carbon AISI 1050 steel and of white and alloyed cast irons. The excellent wear resistance of ADI may be attributed to the strain-affected transformation of high-carbon austenite to martensite that takes place in the surface layer during the wear tests.  相似文献   

20.
以高铬铸铁为对比材料,采用MLD-10型冲击磨料磨损试验机,研究了Fe—B—C合金冲击磨料磨损性能:借助子扫描电镜,探讨了Fe—B—C合金的磨损机制。结果表明:Fe—B—C合金的硬度和冲击韧度与高铬铸铁相当,耐磨性能达到高铬铸铁水平,具有良好的性价比;Fe—B—C合金的磨损机制是以微观切削为主,同时存在微观断裂和微观犁沟的混合磨损。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号