首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
Cross- and autocorrelation histograms of the impulse activity of the visual and sensorimotor cortical neurons were plotted before and after stimulation of the right (RH) and left lateral hypothalamus (LH) which provoked food motivation reactions. Reorganization in correlated activity of neocortical neurons was more expressed after the LH than the RH stimulation. Only after the LH stimulation the number of neuronal pairs with co-related activity in the left hemisphere increased by 41% and some order of priority appeared in the neuronal discharges. The visual neurons discharged after the sensorimotor ones with delays up to 120 ms. The conclusion was drawn that cortical interhemispheric asymmetry of electrical activity during hunger was associated with unequal operation of the right and left lateral hypothalamus.  相似文献   

2.
Recorded the discharges of 22 single neurons in the secondary auditory cortical field (AII) during acquisition of the pupillary dilation conditioned defensive response in 12 chronically prepared cats. All 22 neurons developed discharge plasticity in background activity, and 21 of 22 cells developed plasticity in their responses to the acoustic CS. Decreases in background activity developed at the time that Ss began to display CRs. Increases in background activity developed in Ss that became more tonically aroused during conditioning. However, both increases and decreases in evoked activity developed independently of the rate of pupillary learning, tonic arousal level, or changes in background activity. Findings indicate that changes in background activity are closely related to behavioral processes of learning and arousal, whereas stimulus-evoked discharge plasticity develops solely as a consequence of stimulus pairing. Comparison with data obtained by the 2nd author and colleagues (see record 1985-03305-001) for the primary auditory cortical field (AI) indicates that both regions developed neuronal discharge plasticity early in the conditioning phase and that increases in background activity in primary auditory cortex were also associated with elevated levels of tonic arousal. The incidence of single neurons developing learning-related discharge plasticity was significantly greater in AII than in AI. Findings are discussed in terms of parallel processing in sensory systems and multiple sensory cortical fields. (69 ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

3.
Pretreatment with psychostimulants such as methamphetamine (METH) results in augmented mesostriatal dopamine transmission upon a challenge administration of the drug. This effect can be blocked by dopamine antagonists and excitatory amino acid antagonists. However, no direct comparisons have been made with respect to the effects of a low-dose pretreatment regimen of METH on impulse and transporter-mediated dopamine release or to what extent glutamate release is altered by a pretreatment regimen with METH. The purpose of this study was to examine dopamine and glutamate efflux in the prefrontal cortex and striatum in rats pretreated with METH following either high potassium (80 microM) infusion or after a systemic injection of a low dose of METH. Extracellular dopamine and glutamate concentrations in the prefrontal cortex and striatum were measured in vivo by microdialysis. Potassium infusion increased extracellular dopamine and glutamate concentrations to a greater extent in the prefrontal cortex than in the striatum of METH-pretreated rats compared to saline-pretreated controls. A low dose METH challenge significantly increased extracellular dopamine but not glutamate concentrations in both prefrontal cortex and striatum of all animals. Moreover, the acute METH-induced increased in cortical dopamine efflux was significantly greater in rats pretreated with METH. Overall, these data are the first evidence that repeated METH administrations can enhance cortical glutamate efflux and indicate that a low dose pretreatment regimen of METH enhances dopamine transmission in the prefrontal cortex through both transporter and depolarization-induced mechanisms.  相似文献   

4.
In the course of formation of a food-procuring conditioned reflex to low-frequency electrical stimulation of the cat LGB, the corresponding evoked potentials underwent a change: the main negative component of the evoked potential in the visual area of the cerebral cortex increased; a distinct evoked potential not recorded before conditioning appeared in the sensorimotor area. The changes are regarded as EEG-correlates of formation of a forward conditioned connection. In tests with an isolated presentation of the reinforcing stimulus, a 6--8 c/s rhythm was recorded in the visual cortical area, similar to that of conditioned stimulation of LGB and considered as an EEG-correlate of a backward conditioned connection.  相似文献   

5.
The present study was undertaken to determine whether basal and stimulus-activated dopamine release in the prefrontal cortex (PFC) is regulated by glutamatergic afferents to the PFC or the ventral tegmental area (VTA), the primary source of dopamine neurons that innervate the rodent PFC. In awake rats, blockade of NMDA or alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors in the VTA, or blockade of AMPA receptors in the PFC, profoundly reduced dopamine release in the PFC, suggesting that the basal output of dopamine neurons projecting to the PFC is under a tonic excitatory control of NMDA and AMPA receptors in the VTA, and AMPA receptors in the PFC. Consistent with previous reports, blockade of cortical NMDA receptors increased dopamine release, suggesting that NMDA receptors in the PFC exert a tonic inhibitory control on dopamine release. Blockade of NMDA or AMPA receptors in the VTA as well as blockade of AMPA receptors in the PFC reduced the dopaminergic response to mild handling, suggesting that activation of glutamate neurotransmission also regulates stimulus-induced increase of dopamine release in the PFC. In the context of brain disorders that may involve cortical dopamine dysfunction, the present findings suggest that abnormal basal or stimulus-activated dopamine neurotransmission in the PFC may be secondary to glutamatergic dysregulation.  相似文献   

6.
The activity of neurons of the sensorimotor cortex during the paired combination of stimulations of brain structures (the medial lemniscus, the reticular nucleus of the midbrain tegmentum, and the pyramidal tract), with an interstimulus interval of 1.2 sec, was investigated in awake nonimmobilized rabbits. During the omission of the reinforcing stimulus at a place of its expected delivery, a complicated complex of reorganizations of the impulse activity of the neurons develops, consisting of the reproduction of responses and changes in impulse activity which differ in configuration from them, and which usually appear at later periods. The direct application of acetylcholine to the cortex facilitates the manifestation of both types of reorganizations of the neuronal activity. The application, on the other hand, of atropine suppresses primarily the second type of reorganizations. In addition, acetylcholine increases the total duration of these electrical indices of the temporary connection of the developed reactions, while atropine decreases it.  相似文献   

7.
The regulation of the dopamine (DA) receptors is of considerable interest, in part because treatment with antipsychotic drugs is known to upregulate striatal D2-like receptors. While previous studies have focused on the regulation of striatal DA receptors, less is known about the pharmacological regulation of cortical DA receptors. The purpose of this study was to examine the regulation of DA mRNA receptor expression in the cortex compared to the striatum following treatment with antipsychotic agents. Adult male Sprague-Dawley rats were injected daily with haloperidol (2 mg/kg/day), clozapine (20 mg/kg/day) or a control vehicle for a period of 14 days. Following treatment, brains were subjected to in situ hybridization for the mRNAs encoding the five dopamine receptors; only D1, D2, and D3 receptor mRNAs were detected in these regions. Haloperidol tended to either modestly upregulate or have no effect on dopamine receptor mRNAs detected in striatal structures, while clozapine generally downregulated these mRNAs. On the other hand, in the cortex, both drugs had striking effects on D1 and D2 mRNA levels. Cortical D1 mRNA was upregulated by haloperidol, but this effect was primarily restricted to cingulate cortex; clozapine also upregulated D1 mRNA, but primarily in parietal regions. Haloperidol downregulated D2 mRNA in the majority of cortical regions, but most dramatically in frontal and cingulate regions; clozapine typically upregulated this mRNA, but primarily in regions other than frontal and cingulate cortex. These results indicate that clozapine and haloperidol each have regionally-specific effects, and differentially regulate dopamine receptor mRNA expression in striatal and cortical regions of the rat brain.  相似文献   

8.
Dopaminergic and glutamatergic inputs play an important role in regulating the activity of GABAergic neurons in basal ganglia. To understand more fully the biochemical interactions between these neurotransmitter systems, the effects of blocking dopamine and glutamate (N-methyl-D-aspartate) (NMDA) receptors on the expression of glutamic acid decarboxylase (GAD) mRNA were examined. Persistent blockade of dopamine receptors was achieved by daily injections of EEDQ, a relatively non-selective irreversible D1 and D2 dopamine receptor antagonist, or FNM, a relatively selective irreversible D2 dopamine receptor antagonist. Persistent blockade of NMDA receptors was achieved by continuously infusing dizocilpine (MK-801), a non-competitive NMDA receptor antagonist. The levels of GAD mRNA in mouse brain were measured by in situ hybridization histochemistry following treatment with these agents. Repeated administration of EEDQ increased the levels of GAD mRNA in corpus striatum and frontal and parietal cortex; the first significant effects were seen after 4 days of treatment. Treatment with FNM elicited effects similar to those produced by EEDQ, except FNM also significantly increased GAD mRNA in nucleus accumbens. Neither EEDQ nor FNM produced significant effects on GAD mRNA in olfactory tubercle or septum. Infusion of MK-801 produced a rapid and marked decrease in the levels of GAD mRNA in corpus striatum, nucleus accumbens, olfactory tubercle, septum and frontal and parietal cortex; significant changes were seen as early as 2 days of treatment. No significant effects were seen in globus pallidus. Cellular analysis of emulsion autoradiograms from corpus striatum revealed that MK-801 reduced the amount of GAD mRNA in individual cells as well as the proportion of cells expressing high levels of GAD mRNA. These results suggest that dopamine, though its interaction with D2 dopamine receptors, exerts an inhibitory effect on the expression of GAD mRNA, and that glutamate, though its interaction with NMDA receptors, exerts a stimulatory effect on GAD mRNA expression. They show further that the regulation of gene expression by dopamine receptors or NMDA receptors is different in different regions of the brain.  相似文献   

9.
Studies of neuronal injury and death after cerebral ischemia and various neurodegenerative diseases have increasingly focused on the interactions between mitochondrial function, reactive oxygen species (ROS) production and glutamate neurotoxicity. Recent findings suggest that increased mitochondrial ROS production precedes neuronal death after glutamate treatment. It is hypothesized that under pathological conditions when mitochondrial function is compromised, extracellular glutamate may exacerbate neuronal injury. In the present study, we focus on the relationship between mitochondrial superoxide production and glutamate neurotoxicity in cultured cortical neurons with normal or reduced levels of manganese-superoxide dismutase (MnSOD) activity. Our results demonstrate that neurons with reduced MnSOD activity are significantly more sensitive to transient exposure to extracellular glutamate. The increased sensitivity of cultured cortical neurons with reduced MnSOD activity is characteristically subject only to treatment by glutamate but not to other glutamate receptor agonists, such as N-methyl-d-aspartate, kainate and quisqualate. We suggest that the reduced MnSOD activity in neurons may exacerbate glutamate neurotoxicity via a mechanism independent of receptor activation.  相似文献   

10.
The mechanism underlying dopamine D1 receptor-mediated attenuation of glutamatergic synaptic input to nucleus accumbens (NAcc) neurons was investigated in slices of rat forebrain, using whole-cell patch-clamp recording. The depression by dopamine of EPSCs evoked by single-shock cortical stimulation was stimulus-dependent. Synaptic activation of NMDA-type glutamate receptors was critical for this effect, because dopamine-induced EPSC depressions were blocked by the competitive NMDA receptor antagonist D/L-2-amino-5-phosphonopentanoate (AP5). Application of NMDA also depressed the EPSC, and both this effect and the dopamine depressions were blocked by the A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), implicating adenosine release in the EPSC depression. A1 receptor agonists also depressed EPSCs by a presynaptic action, causing increased paired-pulse facilitation, but this was insensitive to AP5. Activation of D1 receptors enhanced both postsynaptic inward currents evoked by NMDA application and the isolated NMDA receptor-mediated component of synaptic transmission. The biochemical processes underlying the dopamine-induced EPSC depression did not involve either protein kinase A or the production of cAMP and its metabolites, because this effect was resistant to the protein kinase inhibitors H89 and H7 and the cAMP-specific phosphodiesterase inhibitor rolipram. We conclude that activation of postsynaptic D1 receptors enhances the synaptic activation of NMDA receptors in nucleus accumbens neurons, thereby promoting a transsynaptic feedback inhibition of glutamatergic synaptic transmission via release of adenosine. Unusually for D1 receptors, this phenomenon occurs independently of adenylyl cyclase stimulation. This process may contribute to the locomotor stimulant action of dopaminergic agents in the NAcc.  相似文献   

11.
Examined the effects of conditioning on the discharges of single neurons in primary auditory cortex during acquisition of the pupillary conditioned response in 8 chronically prepared cats. Acoustic stimuli (1-sec white noise or tone) were presented with electrodermal stimulation unpaired during a sensitization control phase followed by pairing during a subsequent conditioning phase. Stimulus constancy at the periphery was ensured by the use of neuromuscular blockade. Discharge plasticity developed rapidly for both evoked and background activity, the former attaining criterion faster than the latter. The pupillary dilation conditioned response was acquired at the same rate as were changes in evoked activity (i.e., 10–25 trials) and faster than background activity (i.e., 20–25 trials). Increases in background activity were correlated with increasing level of tonic arousal, as indexed by pretrial size of the pupil. A following paper by D. M. Diamond and N. M. Weinberger (see record 1985-03268-001) examined neuronal discharge in the secondary auditory cortical field. (69 ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

12.
Nitric oxide (NO), a diffusible gas, is a messenger molecule that mediates vascular dilatation and neural transmission. The enzyme nitric oxide synthase (NOS) present in neurons is activated by Ca2+ influx associated with activation of glutamate receptors. Cultured cortical neurons containing NOS are selectively vulnerable to injury by kainic acid (KA). However, the relationship between NOS neurons and excitotoxicity under in vivo conditions is not entirely clear. In the present study, we examined the time course and spatial distribution of changes in NOS neurons caused by an intracortical microinjection of KA in adult rats. NADPH-diaphorase (NADPH-d) histochemistry was used as a marker for NOS and the neuronal changes were correlated with changes in glial cells and endothelial cells. We demonstrated a rapid loss of NADPH-d neurons in the lesion center and degeneration of NADPH-d neurons and nerve terminals throughout ipsilateral cortex and hippocampus; the striatal neurons appeared to be unaffected. Subsequent to cortical neuronal degeneration, new NADPH-d activity appeared in proliferative reactive astrocytes and in endothelial cells at lesion periphery, and in neuronal groups at lesion periphery, in ipsilateral entorhinal cortex and bilateral hippocampus. These findings indicate that neurons expressing NADPH-d in cerebral cortex and hippocampus are selectively vulnerable to KA toxicity in vivo. The subsequent induction of NOS in neural and non-neural cells may be regarded as an adaptive response to the kainate-induced brain lesion.  相似文献   

13.
The activation of rat mesocortical dopaminergic (DA) neurons evoked by the electrical stimulation of the ventral tegmental area (VTA) induces a marked inhibition of the spontaneous activity of prefrontocortical cells. In the present study, it was first shown that systemic administration of either clozapine (a mixed antagonist of D1, D2, and alpha1-adrenergic receptors) (3-5 mg/kg, i.v.), prazosin (an alpha1-adrenergic antagonist) (0.2 mg/kg, i.v.), or sulpiride (a D2 antagonist) (30 mg/kg, i.v.), but not SCH 23390 (a D1 antagonist) (0.2 mg/kg, i.v.), reversed this cortical inhibition. Second, it was found that following the systemic administration of prazosin, the VTA-induced cortical inhibition reappeared when either SCH 23390 or sulpiride was applied by iontophoresis into the prefrontal cortex. Third, it was seen that, whereas haloperidol (0.2 mg/kg, i.v.), a D2 antagonist which also blocks alpha1-adrenergic receptors, failed to reverse the VTA-induced inhibition, the systemic administration of haloperidol plus SCH 23390 (0.2 mg/kg, i.v.) blocked this inhibition. Finally, it was verified that the cortical inhibitions obtained following treatments with either "prazosin plus sulpiride" or "prazosin plus SCH 23390" were blocked by a superimposed administration of either SCH 23390 or sulpiride, respectively. These data indicate that complex interactions between cortical D2, D1, and alpha1-adrenergic receptors are involved in the regulation of the activity of prefrontocortical cells innervated by the VTA neurons. They confirm that the physiological stimulation of cortical alpha1-adrenergic receptors hampers the functional activity of cortical D1 receptors and suggest that the stimulations of cortical D1 and D2 receptors exert mutual inhibition on each other's transmission.  相似文献   

14.
The impulse activity of neurons in the motor cortex of cats during the development of a conditioned food-procuring reflex in relation to a time interval of 2 min (CRT) was analyzed. It was demonstrated, by comparing the behavioral and neurophysiological correlates of the formation of the conditioned food-procuring reaction, that its formation is accompanied by extremely complex systemic transformations which are different for neuronal micro- and macrostructures. The systemic processes in the micro- and macrostructures differed with respect to the specific characteristics of spatial distribution, and with respect to the number, strength, and stability of the manifestation of the functional connections. The capacity of the neurons for functional orientation even at the initial levels of the formation of the reaction, an increase in the per cent of incidence of functional connections in the second half of the conditioned reflex interval, and the substantial destabilization of all neuronal units at the last, highest level of formation of the conditioned reflex food-procuring reaction were common to the micro- and macrostructures in this form of learning.  相似文献   

15.
The aim of the present work was to study the control that the cerebral cortex exerts on red nucleus (RN) neurons in the guinea pig. The experiments were carried out in anaesthetized animals. Electrical stimulation of localized cortical foci was performed by tungsten microelectrodes in frontal and parietal regions containing sensorimotor representations of the body. Single unit RN activity was extracellularly recorded through glass micropipettes, and the encountered RN neurons were recognized by searching their peripheral receptive field. Then, corticorubral influences were tested on RN neurons whose receptive field was located in the same body regions where motor responses were evoked by cortical stimulation. The stimulation with a single pulse evoked complex responses, typically consisting of long lasting inhibitions sometimes preceded by a weak facilitation and always followed by an excitatory rebound. The application of a second pulse modified this pattern, depending on the time interval between the two stimuli. In fact, the reduction of the interval below 300 ms enhanced the excitatory components whereas it shortened the inhibitory component; moreover, an "early" facilitation was evoked but only at intervals as short as 50-150 ms, or less. These results suggest that the corticorubral control may vary according to different levels of cortical activation, becoming more and more facilitatory as the cortical discharges increase from low frequency values (tonic activity) towards high frequency values (phasic activity).  相似文献   

16.
The participation of NMDA and non-NMDA receptors in domoic acid-induced neurotoxicity was investigated in cultured rat cerebellar granule cells (CGCs). Neurons were exposed to 300 microM L-glutamate or 10 microM domoate for 2 h in physiologic buffer at 22 degrees C followed by a 22-h incubation in 37 degrees C conditioned growth media. Excitotoxic injury was monitored as a function of time by measurement of lactate dehydrogenase (LDH) activity in both the exposure buffer and the conditioned media. Glutamate and domoate evoked, respectively, 50 and 65% of the total 24-h increment in LDH efflux after 2 h. Hyperosmolar conditions prevented this early response but did not significantly alter the extent of neuronal injury observed at 24 h. The competitive NMDA receptor antagonist D(-)-2-amino-5-phosphonopentanoic acid and the non-NMDA receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(f)quinoxaline (NBQX) reduced glutamate-induced LDH efflux totals by 73 and 27%, respectively, whereas, together, these glutamate receptor antagonists completely prevented neuronal injury. Domoate toxicity was reduced 65-77% when CGCs were treated with competitive and noncompetitive NMDA receptor antagonists. Unlike the effect on glutamate toxicity, NBQX completely prevented domoate-mediated injury. HPLC analysis of the exposure buffer revealed that domoate stimulates the release of excitatory amino acids (EAAs) and adenosine from neurons. Domoate-stimulated EAA release occurred almost exclusively through mechanisms related to cell swelling and reversal of the glutamate transporter. Thus, whereas glutamate-induced injury is mediated primarily through NMDA receptors, the full extent of neurodegeneration is produced by the coactivation of both NMDA and non-NMDA receptors. Domoate-induced neuronal injury is also mediated primarily through NMDA receptors, which are activated secondarily as a consequence of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)/kainate receptor-mediated stimulation of EAA efflux.  相似文献   

17.
Dopamine D3 receptors have been implicated in pathophysiological substrates of schizophrenia, and neuroleptic drugs which are antagonists primarily at D2 receptors possess therapeutic activity in this disorder. In the present study, rats tested for hypomotility induced by 7-hydroxy-DPAT (7OH, a selective D3 agonist) were pretreated with the neuroleptic haloperidol. These animals showed an attenuated agonist-induced suppression of behavior compared with rats receiving 7OH alone. The drug combination also 'normalized' dopamine metabolism in the frontal cortex, as turnover ratios which are typically enhanced by acute neuroleptic administration were no longer significantly increased when 7OH was also given. These observations suggest that the effects of haloperidol in cortical regions regulating limbic locomotor systems may be important for therapeutic efficacy in schizophrenic symptoms generated from a D3 substrate.  相似文献   

18.
beta-Amyloid is a metabolic product of the amyloid precursor protein, which accumulates abnormally in senile plaques in the brains of patients with Alzheimer's disease. The neurotoxicity of beta-amyloid has been observed in cell culture and in vivo, but the mechanism of this effect is unclear. In this report, we describe the direct neurotoxicity of beta-amyloid in high-density primary cultures of human fetal cortex. In 36-day-old cortical cultures, beta-amyloid neurotoxicity was not inhibited by the broad-spectrum excitatory amino acid receptor antagonist kynurenate or the NMDA receptor antagonist D-2-amino-5-phosphonovaleric acid under conditions that inhibited glutamate and NMDA neurotoxicity. In 8-day-old cortical cultures, neurons were resistant to glutamate and NMDA toxicity but were still susceptible to beta-amyloid neurotoxicity, which was unaffected by excitatory amino acid receptor antagonists. Treatment with beta-amyloid caused chronic neurodegenerative changes, including neuronal clumping and dystrophic neurites, whereas glutamate treatment caused rapid neuronal swelling and neurite fragmentation. These results suggest that beta-amyloid is directly neurotoxic to primary human cortical neurons by a mechanism that does not involve excitatory amino acid receptors.  相似文献   

19.
Previous studies have demonstrated that stimulation of the ventral hippocampal (VH) formation (including the ventral CA1 and subicular areas) elicits increased locomotor activity in rats. The locomotor-activating effects of VH stimulation have been hypothesized to be mediated via hippocampal output to cortical and subcortical dopamine (DA) systems. This study examined whether increased locomotor activity produced by VH stimulation was blocked by pretreatment with a DA receptor antagonist, and whether DA metabolism in subdivisions of the nucleus accumbens, caudate-putamen, and prefrontal cortex was elevated by VH stimulation. Stimulation of the VH (defined as the ventral CA1 and its borders, ventral subiculum, and entorhinal cortex) with the cholinergic agonist carbachol was found to elevate locomotor activity, while pretreatment with the D2 receptor antagonist haloperidol blocked this effect. Stimulation of the VH did not alter DA metabolism (i.e., ratio of the DA metabolites DOPAC or HVA/DA) in any of the brain regions studied. These results indicate that the increased locomotor activity elicited by VH stimulation is not associated with dramatic increases in DA metabolism, but that it does require tonic activation of D2 receptors.  相似文献   

20.
Two animal models of Parkinsonism have been employed to investigate the role of noradrenaline in the motor effects of levodopa. Pretreatment with reserpine or alpha-methyl-p-tyrosine (AMPT) causes cerebral amine depletion and reduction of motor activity, which can be reversed by levodopa. The effect of inhibitors of noradrenaline (NA) synthesis and antagonists of NA and dopamine (DA) receptors on the action of levodopa have been studied. For comparison, the effects of such treatments on apomorphine action has been investigated. Reversal of reserpine (10 mg/kg) induced akinesia in mice by levodopa (200 mg/kg) plus the peripheral decarboxylase inhibitor MK 486 (L-alpha-methyl-dopahydrazine; 25 mg/kg) was inhibited by prior administration of phenoxybenzamine (20 mg/kg), haloperidol (1 mg/kg), pimozide (1 mg/kg) or the dopamine-beta-hydroxylase inhibitor FLA-63 (bis [4-methyl-l-homopiperazinylthiocarbonyl] disulphide; 15 or 25 mg/kg). Apomorphine (2 mg/kg) reversal of reserpine akinesia was similarly inhibited by haloperidol (1 mg/kg) and pimozide (2 mg/kg) but not by phenoxybenzamine (20 mg/kg) or FLA-63 (25 mg/kg). Apomorphine (5 mg/kg) reversal of reserpine akinesia was enhanced by simultaneous administration of the noradrenergic agonist clonidine (1 mg/kg) and this effect was not significantly altered by prior administration of FLA-63. Clonidine, however, reversed the FLA-63 induced inhibition of the levodopa effect on reserpine akinesia. Levodopa reversal of akinesia induced by AMPT (200 mg/kg) was also inhibited by FLA-63, pimozide and haloperidol. Phenoxybenzamine, however, was without effect, but produced a different pattern of behaviour. Similarly, pimozide and haloperidol blocked apomorphine reversal of AMPT induced akinesia; FLA-63 was without effect but phenoxybenzamine produced marked inhibition. The results suggest that full restoration of motor activity in reserpine or AMPT pretreated animals requires stimulation of both DA and NA receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号