首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The changes in the amounts and composition of dissolved organic matter (DOM) following long-term peat restoration are unknown, although this fraction of soil organic matter affects many processes in such ecosystems. We addressed this lack of knowledge by investigating a peatland in south-west Germany that was partly rewetted 20 years ago. A successfully restored site and a moderately drained site were compared, where the mean groundwater levels were close to the soil surface and around 30 cm below surface, respectively. The concentrations of dissolved organic carbon (DOC) at 4 depths were measured over one year. The specific absorbance was measured at 280 nm and the fluorescence spectra were used to describe the aromaticity and complexity of DOM.The investigations showed that 20 years of peatland restoration was able to create typical peatland conditions. The rewetted site had significantly lower DOC concentrations at different depths compared to the drained site. The specific UV absorbance showed that the rewetted site had a lower level of aromatic DOM structures. The decreasing specific UV absorbance might indicate an increasing contribution of small organic molecules to DOM. It was hypothesized that the decreasing DOC concentrations and the relative enrichment of small, readily degradable organic molecules, reflect the slower decomposition of organic matter after the re-establishment of the water table. Seasonal trends provided substantial evidence for our hypothesis that reduced DOC concentrations were caused by reduced peat decomposition. During summer, the elevated DOC values were accompanied by an increase in DOM aromaticity and complexity. Our results demonstrated a close link between C mineralization and DOC production. We concluded that long-term peatland restoration in the form of the successful re-establishment of the water table might result in reduced peat decomposition and lower DOC concentrations. The restoration of peatlands seems to have a positive impact on C sequestration.  相似文献   

2.
This paper investigates the characteristics of dissolved organic nitrogen (DON) in raw water from the Huangpu River and also in water undergoing treatment in the full-scale Yangshupu drinking water treatment plant (YDWTP) in Shanghai, China. The average DON concentration of the raw water was 0.34 mg/L, which comprised a relatively small portion (~ 5%) of the mass of total dissolved nitrogen (TDN). The molecular weight (MW) distribution of dissolved organic matter (DOM) was divided into five groups: > 30, 10-30, 3-10, 1-3 and < 1 kDa using a series of ultrafiltration membranes. Dissolved organic carbon (DOC), UV absorbance at wavelength of 254 nm (UV254) and DON of each MW fraction were analyzed. DON showed a similar fraction distribution as DOC and UV254. The < 1 kDa fraction dominated the composition of DON, DOC and UV254 as well as the major N-nitrosodimethylamine formation potential (NDMAFP) in the raw water. However, this DON fraction cannot be effectively removed in the treatment line at the YDWTP including pre-ozonation, clarification and sand filtration processes. The results from linear regression analysis showed that DON is moderately correlated to DOC, UV254 and trihalomethane formation potential (FP), and strongly correlated to haloacetic acids FP and NDMAFP. Therefore, DON could serve as a surrogate parameter to evaluate the reactivity of DOM and disinfection by-products FP.  相似文献   

3.
More stringent legislation on dissolved organic matter (DOM) urges the drinking water industry to improve in DOM removal, especially when applied to water with high dissolved organic carbon (DOC) contents and low turbidity. To improve conventional processes currently used in drinking water treatment plants (DWTPs), the performances of a hybrid membrane bioreactor containing fluidised activated carbon were investigated at the DWTP of Rennes. Preliminary results showed that the residual DOC was the major part of the non-biodegradable fraction. In order to increase the global efficiency, an upstream oxidation step was added to the process. Ozone was chosen to break large molecules and increase their biodegradability. The first step consisted of carrying out lab-scale experiments in order to optimise the necessary ozone dose by measuring the process yield, in terms of biodegradable dissolved organic carbon (BDOC). Secondly, activated carbon adsorption of the DOC present in ozonated water was quantified. The whole process was tested in a pilot unit under field conditions at the DWTP of Rennes (France). Lab-scale experiments confirmed that ozonation increases the BDOC fraction, reduces the aromaticity of the DOC and produces small size organic compounds. Adsorption tests led to the conclusion that activated carbon unexpectedly removes BDOC first. Finally, the pilot unit results revealed an additional BDOC removal (from 0.10 to 0.15 mg L−1) of dissolved organic carbon from the raw water considered.  相似文献   

4.
Water samples were collected from 20 wetland, river and lake sites across Eastern Ontario and Western Quebec to investigate the distribution of methylmercury (MeHg) associated with various size fractions of dissolved organic matter (DOM). Tangential Flow UltraFiltration (TUF) was used to fractionate DOM by nominal molecular size (<0.2 μm, <300 kDa, <30 kDa, <5 kDa and <1 kDa). DOM fluorescence (DOM FL) and absorbance (DOC Abs) were used to quantify DOM photoreactivity and aromaticity in each sample. Significant differences in the size-associated distribution of MeHg, Dissolved Organic Carbon (DOC), DOM FL, and DOM Abs were observed between wetlands, rivers, and lakes. The low molecular weight (LMW) fraction (<5 kDa) in wetlands contained the majority of MeHg (70.0 ± 13.8%), DOC (56.1 ± 9.4%), and DOM FL (77.4 ± 7.5%). DOM FL was also high in the LMW fraction for rivers (60.6 ± 25%) and lakes (75.2 ± 16.9%). Mean MeHg concentrations in the LMW fraction of lakes (41 ± 26 pg L− 1) and rivers (32 ± 19 pg L− 1) were substantial but much lower than wetlands. Rivers had the highest percentage of methylmercury (38.0 ± 23.5%) in the particulate (>0.2 µm) fraction. This research highlights the importance of low molecular weight dissolved organic matter in methylmercury fate. For example, a large proportion of MeHg was found in the LMW weight fractions (mean = 47.3 ± 25.4%) of the wetlands, rivers, and lakes in this study.  相似文献   

5.
The use of membrane processes for wastewater treatment and reuse is rapidly expanding. Organic, inorganic, and biological constituents are effectively removed by reverse osmosis (RO) membrane processes, but concentrate in membrane retentates Disposal of membrane concentrates is a growing concern. Applying advanced oxidation processes (AOPs) to RO retentate is logical because extensive treatment and energy inputs were expended to concentrate the organics, and it is cheaper to treat smaller flowstreams. AOPs (e.g., UV irradiation in the presence of titanium dioxide; UV/TiO2) can remove a high percentage of organic matter from RO retentates. The combination of AOPs and a simple biological system (e.g., sand filter) can remove higher levels of organic matter at lower UV dosages because AOPs produce biologically degradable material (e.g., organic acids) that have low hydroxyl radical rate constants, meaning that their oxidation, rather than that of the primary organic matter in the RO retentate, dictates the required UV energy inputs. At the highest applied UV dose (10 kWh m3), the dissolved organic carbon (DOC) in the RO retentate decreased from ∼40 to 8 mg L1, of which approximately 6 mg L1 were readily biologically degradable. Therefore, after combined UV treatment and biodegradation, the final DOC concentration was 2 mg L1, representing a 91% removal. These results suggest that UV/TiO2 plus biodegradation of RO retentates is feasible and would significantly reduce the organic pollutant loading into the environment from wastewater reuse facilities.  相似文献   

6.
A new type of high-performance liquid chromatography (HPLC)-size exclusion chromatography (SEC) system with ultraviolet (UV) absorbance detection and non-dispersive infrared (NDIR) detection of total organic carbon is described. The introduction of an online degassing tube and a low-volume HPLC column helped to reduce the analytical time and increase the sensitivity of the SEC system. This study is the first in which linear calibration curves (R2 > 0.99) were obtained for both UV absorbance and NDIR data for polystyrene sulfonate standards, which are the most suitable standards for molecular size analysis of aquatic humic substances as well as dissolved organic matter (DOM). Using the calibration curves, the molecular size distribution of DOM in water collected from Lake Kasumigaura and in pore water from lake sediments was estimated. Most of the DOM had a molecular weight less than 4000 Daltons (Da), and the amount of low-molecular-weight DOM (∼2000 Da) with low UV absorbance increased with depth in the sediment pore water. This result shows the importance of combining quantitative analysis by NDIR detection with qualitative analysis by UV detection to determine the chemical and physical properties of DOM. The possible sources and reactivity of DOM in Lake Kasumigaura and its sediment pore water are also discussed.  相似文献   

7.
Ultrafiltration (UF) fouling has been attributed to concentration polarization, gel layer formation as well as outer and inner membrane pore clogging. It is believed that mass of humic materials either retained on membrane surface or associated with membrane inner pore surface is the primary cause for permeate flux decline and filtration resistance build-up in water supply industries. While biofilm/biofouling and inorganic matter could also be contributing factors for permeability decline in wastewater treatment practices. The present study relates UF fouling to mass of dissolved organic matter (DOM) retained on membrane and quantifies the effect of retained DOM mass on filtration flux decline. The results demonstrate that larger pore membranes exhibit significant flux decline in comparison with the smaller ones. During a 24-h period, dissolved organic carbon mass retained in 10 kDa membranes was about 1.0 g m−2 and that in 100 kDa membranes was more than 3 times higher (3.6 g m−2). The accumulation of retained DOM mass significantly affects permeate flux. It is highly likely that some DOMs bind or aggregate together to form surface gel layer in the smaller 10 kDa UF system; those DOMs largely present in inner pore and serving as pore blockage on a loose membrane (100 kDa) are responsible for severe flux decline.  相似文献   

8.
The functional properties of dissolved organic matter (DOM) from Rough Sike, a stream draining blanket peat in the northern Pennines, UK, were investigated using a series of 12 standardised assays. Nine stream samples were collected at different discharges during 2003-2006, and DOM concentrates obtained by low temperature rotary evaporation. Suwannee River Fulvic Acid was used as a quality control standard in the assays. Dissolved organic matter in high-discharge samples was more light-absorbing at 280 and 340 nm and adsorbed more strongly to alumina, than DOM characteristic of low streamflow, but was less fluorescent and hydrophilic, and poorer in proton-dissociating groups. No significant differences were found in light absorption at 254 nm, copper- or benzo(a)pyrene binding, or photochemical fading. Combination of the Rough Sike data with previously-published results for other streams and a lake yields totals of 20-23 values per assay, for a range of DOM types. For the combined data, variability in all the assays is significant (p < 0.001), as judged by comparison with variations in repeat measurements on the quality control standard. Analysis of the combined data shows that DOM hydrophilicity and adsorption are well-predicted by linear relationships with the extinction coefficient at 340 nm (E340), while good quadratic relationships exist between E340 and both buffering capacity and fluorescence.  相似文献   

9.
This paper focuses on the study of the photochemical activity of dissolved organic matter present in rainwater. Formation rates of the reactive species hydroxyl radical (OH), singlet oxygen (1O2) and dissolved organic matter triplet states (3DOM?) were determined by irradiation (UV-A) of wet-only rainwater samples collected in Turin (Italy) in the presence of specific scavengers (benzene, furfuryl alcohol and phenol, respectively). Photo-formation rates of OH (≈ 3 · 1011 M s1) and 1O2 (≈ 1014 M s1) were lower (1 or 2 orders of magnitude) or largely lower (4 to 10 orders of magnitude) than those determined for fog and cloud samples in previous studies. 3DOM? formation rate values were either negligible or quite low (≈ 1012 M s1) by comparison with those evaluated for surface water samples. Deduced steady-state [OH] were in the same range as those reported for fog samples in the literature (8.7 · 1016 to 1.5 · 1015 M), while [1O2] was often several orders of magnitude lower and, therefore, could be considered as negligible. Nitrite (NO2) constituted the main source of OH (69 ± 21 to 138 ± 36%), and the deduced contribution of DOM was low or nil. All the results obtained in this study tend to demonstrate that DOM (including HUmic LIke Substances, HULIS) present in rainwater is poorly or not photoactive. Therefore, there could be considerable difference between rainwater DOM (HULIS included) and the organic matter present in surface waters, particularly the humic substances, as far as the photochemical activity is concerned.  相似文献   

10.
Pisani O  Yamashita Y  Jaffé R 《Water research》2011,45(13):3836-3844
This study shows that light exposure of flocculent material (floc) from the Florida Coastal Everglades (FCE) results in significant dissolved organic matter (DOM) generation through photo-dissolution processes. Floc was collected at two sites along the Shark River Slough (SRS) and irradiated with artificial sunlight. The DOM generated was characterized using elemental analysis and excitation emission matrix fluorescence coupled with parallel factor analysis. To investigate the seasonal variations of DOM photo-generation from floc, this experiment was performed in typical dry (April) and wet (October) seasons for the FCE. Our results show that the dissolved organic carbon (DOC) for samples incubated under dark conditions displayed a relatively small increase, suggesting that microbial processes and/or leaching might be minor processes in comparison to photo-dissolution for the generation of DOM from floc. On the other hand, DOC increased substantially (as much as 259 mgC gC−1) for samples exposed to artificial sunlight, indicating the release of DOM through photo-induced alterations of floc. The fluorescence intensity of both humic-like and protein-like components also increased with light exposure. Terrestrial humic-like components were found to be the main contributors (up to 70%) to the chromophoric DOM (CDOM) pool, while protein-like components comprised a relatively small percentage (up to 16%) of the total CDOM. Simultaneously to the generation of DOC, both total dissolved nitrogen and soluble reactive phosphorus also increased substantially during the photo-incubation period. Thus, the photo-dissolution of floc can be an important source of DOM to the FCE environment, with the potential to influence nutrient dynamics in this system.  相似文献   

11.
In this study, batch and column adsorption experiments with granular activated carbon (GAC) were carried out for removing dissolved organic matter (DOM) of a pond water at different water temperatures (5, 20, and 35 °C). The water was characterized before and after the adsorption step using UV/VIS spectroscopy and size-exclusion chromatography (SEC) combined with diode array detection (DAD). DOM breakthrough of GAC filters has been found to be slower at higher water temperatures, the DOM removal being most effective at 35 °C. UV/VIS spectra and SEC chromatograms of water samples treated at different water temperatures indicate that an increase in temperature especially supports the adsorption of small DOM molecules as well as molecules absorbing at higher wavelengths, specifying aromatic structures of DOM. SEC-DAD has been demonstrated to be an efficient method for characterizing DOM of natural waters and for detecting relative changes of DOM during the water treatment process.  相似文献   

12.
The transfer of carbon from terrestrial peat to the fluvial environment forms an important component of the peatland carbon cycle, and has major implications for water quality. Dissolved organic carbon (DOC) is generally considered the largest constituent of aquatic carbon and tends to be the most intensively monitored, particularly in peatland catchments. However, many long-term records for DOC are based on proxy studies that use water colour as a surrogate. This paper tests the robustness of using spectrophotometric techniques to monitor water colour, based on absorbance from a single wavelength at 400 nm, as a surrogate for true DOC determination. The general ability of spectrophotometric analysis to measure low DOC concentrations depends on the calibration used; thus, the minimum mass of DOC detectable varies considerably and in this study was found to be as high as 10.32 mg C L− 1. While there is often a significant correlation between water colour and DOC, it was found that the use of single or even “pooled” regressions to predict DOC concentrations could result in miscalculations of more than 50%. Further, the water colour-DOC relationship in blanket peat pore waters was found to vary significantly between peat layers, land management treatments and through time. Thus, studies using long-term water colour records as a proxy for long-term DOC concentrations in peatlands must be treated with a certain degree of caution, especially in cases where changes may have taken place to DOC production, such as those caused by land management change, during the course of investigation.  相似文献   

13.
Thacker SA  Tipping E  Baker A  Gondar D 《Water research》2005,39(18):4559-4573
A series of 11 standardised, reproducible, assays have been developed of physico-chemical functions of dissolved organic matter (DOM) in freshwaters. The assays provide quantitative information on light absorption, fluorescence, photochemical fading, pH buffering, copper binding, benzo(a)pyrene binding, hydrophilicity and adsorption to alumina. To obtain DOM for the assays, a 45 L sample of filtered freshwater was rotary-evaporated to reduce the volume to ca. 500 cm3. The concentrate was then passed through a strong cation exchanger, in the Na+ form, to remove alkaline-earth cations, and then through 0.7 and 0.2 microm filters. Eight samples, two each from a lake and three streamwaters, were processed. The yields of dissolved organic carbon (DOC) ranged from 70% to 107% (average 91%). The samples of DOM, stored in the dark at 4 degrees C, retained their functional assay characteristics for up to 7 months. When assaying the concentrates, parallel assays were performed with Suwannee River fulvic acid (SRFA), as a quality control standard. For most of the assays, the results for eight freshwater DOM samples are similar to those obtained with SRFA, the chief exception being the greater hydrophilicity of the DOM samples. For eight of the assays, variability among the DOM samples is significantly (p < 0.01) greater than can be explained by analytical error, i.e. by comparison with results for the SRFA quality standard; the three exceptional assays are photochemical fading, copper binding and benzo(a)pyrene binding. The two lakewater samples studied gave the most extreme assay results, probably because of the influence of phytoplankton-derived DOM. Significant correlations of hydrophilicity and adsorption with optical absorbance may mean that some DOM functional properties can be predicted from comparatively simple measurements.  相似文献   

14.
Diuron is frequently detected in some drinking water reservoirs under the Burgundy vineyards, where organic amendments are applied. The environmental effect of these amendments on pesticide transport is ambiguous: on the one hand it could enhance their retention by increasing soil organic carbon content; on the other hand, dissolved organic matter (DOM) could facilitate their transport. Elutions were performed using columns packed with glass beads in order to investigate DOM-diuron interactions, and the possible co-transport of diuron and DOM. Four organic amendments (A, B, C and D) were tested; C and D were sampled at fresh (F) and mature (M) stages. An increase in diuron leaching was observed only for A and DF amendments (up to 16% compared to the DOM-free blank samples), suggesting a DOM effect on diuron transport. These results could be explained by the higher DOM leaching for A and DF compared to B, CF, CM and DM increasing diuron-DOM interactions. These interactions seem to be related to the aromatic and aliphatic content of the DOM, determining formation of hydrogen and non-covalent bonds. The degree of organic matter maturity does not seem to have any effect with amendment C, while a reduction in diuron leaching is observed between DF and DM. After equilibrium dialysis measurement of diuron-DOM complexes, it appeared that less than 3% of the diuron applied corresponded to complexes with a molecular weight > 1000 Da. Complexes < 1000 Da could also take part in this facilitated transport.  相似文献   

15.
Nanomolar concentrations of steroid hormones such as 17β-estradiol can influence the reproductive development and sex ratios of invertebrate and vertebrate populations. Thus their release into surface and ground waters from wastewater facilities and agricultural applications of animal waste is of environmental concern. Many of these compounds are chromophoric and susceptible to photolytic degradation. High intensity UV-C radiation has been demonstrated to degrade some of these compounds in engineered systems. However, the degradation efficacy of natural solar radiation in shallow fresh waters is less understood. Here photolytic experiments with 17β-estradiol demonstrated modest photodegradation (~ 26%) when exposed to simulated sunlight between 290 and 720 nm. Photodegradation significantly increased (~ 40-50%) in the presence of 2.0-15.0 mg/l of dissolved organic carbon (DOC) derived from humic acids of the Suwannee River, GA. However, rates of photodegradation reached a threshold at approximately 5.0 mg/l DOC. Observed suppression of photolysis in the presence of a radical inhibitor (i.e. 2-propanol) indicated that a significant proportion of the degradation was due to radicals formed from the photolysis of DOC. Although photodegradation was greatest in full sunlight containing UV-B (290-320 nm), degradation was also detected with UV-A (320-400 nm) and visible light (400-720 nm) alone.  相似文献   

16.
The effect of TiO2 photocatalytic oxidation on the natural organic matter (NOM) properties of two Australian surface waters were quantified using UV-vis spectroscopy, high performance size exclusion chromatography (HPSEC) with a multi-wavelength UV detector, liquid chromatography with organic carbon detector (LC-OCD), and trihalomethane formation potential (THMFP) analyses. Both the UV absorbance at wavelengths greater than 250 nm and dissolved organic carbon (DOC) content decreased significantly with treatment, although complete mineralization of NOM could not be achieved. Multi-wavelength UV detection of HPSEC analysis was shown to be useful to display further changes to NOM composition and molecular weight profiles because the organic molecules was transformed into compounds that absorb weakly at the typical detection wavelength of 250-260 nm. The multi-wavelength HPSEC results also revealed that photocatalytic oxidation yields by-products with a low aromaticity and low molecular weight. The LC-OCD chromatograms indicated that low molecular acids and neutral compounds remained after photocatalytic oxidation. Those groups of compounds did not seem to contribute significantly to the formation of trihalomethanes.  相似文献   

17.
The influence of dissolved organic matter (DOM) on the sorption of four phenols, 2,4,6-trichlorophenol (2,4,6-TCP), pentachlorophenol (PCP), 2,4-dinitrophenol (2,4-DNP) and 2-methyl-4,6-dinitrophenol (2-M-4,6-DNP), onto sandy aquifer material at different pH values was investigated using flow through column experiments. The pH-dependent sorption of the chlorinated phenols 2,4,6-TCP and PCP was not significantly affected by DOM (measured as dissolved organic carbon, DOC), whereas in the case of nitrophenols a significant lower retardation was found, depending on the DOC concentration and pH value of the aqueous solution. Sorption decreases with increasing DOC concentration, which indicates a binding of these compounds by DOM. The degree of sorption reduction depends on the pH value and increases with increasing fraction of neutral species. The different behaviour of nitrophenols in comparison to the chlorophenols is assumed to be a result of specific charge-transfer interactions. A combined sorption and complex formation model was used to describe the effect of pH and DOC concentration on the sorption of nitrophenols onto aquifer material and to estimate binding coefficients of neutral nitrophenols on DOM.  相似文献   

18.
Potential of perfluorooctanoic acid (PFOA) to degrade via indirect photolysis in aquatic solution under conditions representing surface water was studied. Globally distributed and bioaccumulative PFOA does not absorb solar radiation by itself, but may be potentially photochemically transformed by the natural sensitizers such as dissolved organic matter (DOM), nitrate or ferric iron. Reaction solutions containing purified water, fulvic acid (representing DOM), nitrate, ferric iron or sea water from the Baltic Sea were spiked with PFOA and irradiated with an artificial sun (290-800 nm). In comparison similar samples were also irradiated under UV radiation at 254 nm in order to study the direct photolysis. UV radiation at 254 nm decomposed PFOA to perfluoroheptanoic-, perfluorohexanoic- and perfluoropentanoic acids. The samples irradiated with an artificial sun contained no decomposition products and no decrease in PFOA concentration was observed. According to the detection limit of the products and typical solar radiation at the surface of ocean, the photochemical half-life for PFOA was estimated to be at least 256 years at the depth of 0 m, > 5000 years in the mixing layer of open ocean and > 25,000 years in coastal ocean. This is significantly more than the previously reported photochemical half-life of PFOA (> 0.96 years).  相似文献   

19.
The overall purpose of this research was to examine the impacts of filter backwash water (FBWW) and membrane backwash water (MBWW) recycles on water quality in coagulation-sedimentation processes. Specifically, the impact of recycling 5 or 10% by volume of FBWW and MBWW with surface water on the removal of natural organic matter (NOM) was evaluated at bench-scale using a standard jar-test apparatus and measurement of specific water quality parameters including total organic carbon (TOC), dissolved organic carbon (DOC), UV254, turbidity, total aluminum and zeta potential. The results of jar test conducted on a source water with a specific UV absorbance (SUVA) value within the range of 2-4 mg/L m showed a significantly higher removal of DOC from the raw water that was blended with 5 and 10% by volume of FBWW as compared to control trials where backwash water was not added. Increasing rates of MBWW that did not contain destabilized hydroxide precipitates did not significantly change DOC concentrations in the settled water samples as compared to the control trials. For source waters that are characterized as having low turbidity with medium SUVA values, these results could hold particular significance for plants that have reached treatment ceilings in terms of dissolved NOM removal using conventional coagulation designs.  相似文献   

20.
Cyanobacterial blooms represent a significant ecological and human health problem worldwide. In aquatic environments, cyanobacterial blooms are actually surrounded by dissolved organic matter (DOM) and attached organic matter (AOM) that bind with algal cells. In this study, DOM and AOM fractionated from blooming cyanobacteria in a eutrophic freshwater lake (Lake Taihu, China) were irradiated with a polychromatic UV lamp, and the photochemical heterogeneity was investigated using fluorescence excitation–emission matrix (EEM)-parallel factor (PARAFAC) analysis and synchronous fluorescence (SF)-two dimensional correlation spectroscopy (2DCOS). It was shown that a 6-day UV irradiation caused more pronounced mineralization for DOM than AOM (59.7% vs. 41.9%). The EEM-PARAFAC analysis identified one tyrosine-, one humic-, and two tryptophan-like components in both DOM and AOM, and high component photodegradation rates were observed for DOM versus AOM (k > 0.554 vs. <0.519). Moreover, SF-2DCOS found that the photodegradation of organic matters followed the sequence of tyrosine-like > humic-like > tryptophan-like substances. Humic-like substances promoted the indirect photochemical reactions, and were responsible for the higher photochemical rate for DOM. The lower photodegradation of AOM benefited the integrality of cells in cyanobacterial blooms against the negative impact of UV irradiation. Therefore, the photochemical behavior of organic matter was related to the adaptation of enhanced-duration cyanobacterial blooms in aquatic environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号