首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Powder metallurgy (PM) nickel-based superalloy FGH95 has been widely used for components, which requires the greatest service performance. The surface integrity is becoming more and more important in order to satisfy the increasing service demands. However, the machined surface of FGH95 is easily damaged due to its poor machinability. The purpose of this paper is to investigate the effects of dry milling process parameters on the surface integrity of FGH95. Experiments were conducted on a CNC machining center under different cutting speeds. The machined surface is evaluated in terms of surface roughness, microhardness and white layer. Experiments results show milled surface integrity of FGH95 is sensitivity to the cutting speeds. The machined surface roughness decreases with increase of the cutting speed, but with further increase of cutting speed between 80?m/min to 100?m/min an increase in surface roughness appears. For microhardness, it can be seen that the machined workpiece surface hardens seriously. It can also draw the conclusion that cutting speed has the marginal effect on the white layer thickness generated in the machined subsurface.  相似文献   

2.
Nickel-based alloy is difficult-to-machine because of its low thermal diffusive property and high strength at higher temperature. The machinability of nickel- based Hastelloy C-276 in turning operations has been carried out using different types of inserts under dry conditions on a computer numerical control (CNC) turning machine at different stages of cutting speed. The effects of cutting speed on surface roughness have been investigated. This study explores the types of wear caused by the effect of cutting speed on coated and uncoated carbide inserts. In addition, the effect of burr formation is investigated. The chip burr is found to have different shapes at lower speeds. Triangles and squares have been noticed for both coated and uncoated tips as well. The conclusion from this study is that the transition from thick continuous chip to wider discontinuous chip is caused by different types of inserts. The chip burr has a significant effect on tool damage starting in the line of depth-of-cut. For the coated insert tips, the burr disappears when the speed increases to above 150 m/min with the improvement of surface roughness; increasing the speed above the same limit for uncoated insert tips increases the chip burr size. The results of this study showed that the surface finish of nickel-based alloy is highly affected by the insert type with respect to cutting speed changes and its effect on chip burr formation and tool failure.  相似文献   

3.
This study focuses on the mechanical drilling of micro-holes in Inconel 718 alloy under wet cutting conditions. Qualitative and quantitative mechanical and metallurgical characterization of the surface and subsurface region was undertaken using nanoindentation, backscatter electron microscopy, electron backscatter diffraction microscopy and transmission electron microscopy. The analysis revealed three different zones, namely, a highly deformed nanostructured surface layer containing ultra-fine and high aspect ratio grains drawn out by large scale deformation, a deformed subsurface layer and finally the unaffected parent metal. The nano-hardness, plastic deformation, microstructure and crystal misorientation were assessed. The correlation between the modified surface and subsurface layers and the cutting conditions was established. The phenomena behind the formation of the different zones were investigated. The results suggest that subsurface alterations are driven by thermo-mechanical loading, causing plasticity and grain refinement by excessive shearing local to the cut surface.  相似文献   

4.
高速走丝线切割中电极丝对加工表面粗糙度的影响   总被引:2,自引:0,他引:2  
工件的表面粗糙度是高速走丝线切割中一项重要的加工工艺指标.本文主要从电极丝的直径大小、走丝速度、变频进给速度、张力、换向次数和垂直度,对高速走丝线切割加工工件的表面粗糙度进行了分析.并结合生产实际,介绍了如何合理的选用电极丝的各参数.  相似文献   

5.
6.
响应面法在高速加工切削参数优选中的应用   总被引:2,自引:0,他引:2  
方沂  李凤泉 《机械设计》2006,23(7):34-36
讨论了响应面法的原理及应用,结合回归统计建立了淬硬模具钢高速铣削表面粗糙度的经验公式,并分析了切削速度、进给率和轴向切削深度对表面粗糙度的影响规律,为高速加工切削参数的选择和表面质量的控制提供依据。  相似文献   

7.
8.
9.
Nickel-based single crystal superalloy is widely used in the field of aerospace and nuclear reaction equipment due to its good properties. Ultra-precision machining technology is an important means to ensure the surface quality of parts. However, the anisotropy of materials has great influence on the evolution of surface and subsurface defects and the removal of materials in the process of machining. In this paper, The MD (molecular dynamics) modeling and simulation verification of cutting anisotropic nickel-based single crystal superalloy workpiece with silicon nitride tool is carried out by using the mixed potential function simulation. Through cutting simulation and visualization, the types, number, deformation area and dislocation evolution of the machined surface defects and inside of the workpiece defect of nickel-based single crystal superalloy with different crystal orientations are analyzed. The evolutionary mechanism of the machined surface defects and the law of material removal are discussed. The research content provides a theoretical basis for parameter optimization and improvement of machining quality in the atomic and close-to-atomic scale (ACS) cutting process, and technical support for efficient and precise machining process of the nickel-based superalloy.  相似文献   

10.
In this paper, the morphology and micro-mechanism of chip formation during high-speed machining aluminum alloy 7050-T7451 is investigated based on the combination of dislocation theory and plastic deformation theory. Experiments of quick stop stoppage for turning and special method (Buda) for milling process were carried out in order to obtain shear angle in different cutting speeds. The results show that effective flow stress and temperature in front edge zone is higher and more concentrated than that in other deformation zones. The shear front-lamellar structure was observed and analyzed in the front edge zone which influences the chip formation directly. The influence of cutting speed on chip formation was analyzed by simulation and experiments. Cutting speed is an important factor affecting the morphology evolution and chip formation. When the cutting speed is below 1500 m/min, the concentration of shear stress and the shear front-lamella structure of cutting deformation are more remarkable and easier for forming continuous ribbon chips. With the cutting speed increase, the ribbon chip transforms into serrated chip when a critical cutting speed (2500 m/min) is reached. Finally, microscopic mechanism of chip formation has been revealed and critical condition of the shear front—the layer structure formation—has been determined.  相似文献   

11.
Inconel 718 is widely used in high-temperature environments, high-performance aircraft, and hypersonic missile weapon systems; however, it is very difficult to machine using conventional techniques. This study employed an L9 Taguchi orthogonal array for the analysis of wire electrical discharge machining parameters when used for the machining of Inconel 718. Our aim was to determine the optimal combination of parameters to minimize surface roughness while maximizing the material removal rate. The Taguchi method is widely applied in mechanical engineering with the aim of identifying the optimal combination of processing parameters as they pertain to single quality characteristics. Unfortunately, Taguchi analysis often leads to contradictory results when seeking to rectify multiple objectives. To resolve this issue, this study implemented gray relational analysis in conjunction with Taguchi method to obtain the optimal combination of parameters to deal specifically with multiple quality objectives. For the dual objectives of surface roughness and material removal rate, the optimal combination of parameters derived using gray relational analysis resulted in a mean surface roughness of 2.75 μm. In L9 orthogonal array experiments, run 1 produced the best gray relational grade with mean surface roughness of 2.80 μm, representing an improvement of 1.8%. The material removal rate achieved after the application of gray relational analysis was 0.00190 g/s, whereas the L9 experiment achieved a material removal rate of 0.00123 g/s, representing an improvement of 54.5%.  相似文献   

12.
This article investigates the chip formation mechanism and its influence on cutting forces during the elliptic vibration-assisted (EVA) cutting of fiber-reinforced polymer composites. To clarify the effect of the vibration, systematic finite element and experimental studies were performed on both the EVA and the traditional cutting of unidirectional fiber-reinforced polymers with various fiber orientations. The key factors that govern the cutting forces have been taken into account, such as the depth of cut, feed rate, tool vibration frequency and amplitude. The study found that fiber orientation significantly affects the chip formation and cutting forces. Fiber fracture can happen either above or below the trimming path, but that above the path dominates chip formation. When a fiber orientation is less than 90°, chipping is mainly through bending-induced fracture of fibers; when it is beyond 90°, however, chipping is mostly by crushing the fracture of fibers. Compared with a traditional cutting process, the EVA cutting can minimize the fiber orientation effect through localized fiber fracture. A dimensional analysis was then performed to provide a quantitative prediction of the cutting forces.  相似文献   

13.

Ultra-precision grinding, wire-cut electro discharge machining and lapping are often used to machine the tools in fine blanking industry. And the surface integrity from these machining processes causes great concerns in the research field. To study the effect of processing surface integrity on the fine blanking tool life, the surface integrity of different tool materials under different processing conditions and its influence on fatigue life were thoroughly analyzed in the present study. The result shows that the surface integrity of different materials was quite different on the same processing condition. For the same tool material, the surface integrity on varying processing conditions was quite different too and deeply influenced the fatigue life.

  相似文献   

14.
Further progress in green cutting applications depends on the innovativeness of machine tools, advances in tool development, and, especially, more complex tool and cutting technologies. Therefore, this study analyzes the factors influencing high-speed cutting performance. Grey relational analysis and the Taguchi method are then incorporated in the experimental plan with high-speed milling of AISI H13 tool steel. Experimental results indicate that the contributions of tool grinding precision, geometric angle, and cutting conditions to the multiple quality characteristics of high-speed milling for AISI H13 tool steel are 11.75, 9.80, and 73.11 %, respectively. For rough machining, tool life and metal removal volume are the primary evaluation indicators and cutting parameters should be prioritized, especially cutting speed and feed per tooth. In finish machining, workpiece surface roughness is the primary evaluation indicator. Besides the selection of cutting parameters, the design and grinding of endmill are critical factors, especially the design and grinding of relief angles.  相似文献   

15.
In machining operation, the surface quality is one of the most important requirements for many workpieces. Because of the special physical and chemical properties, good-machined surface quality becomes a key issue to solve in machining Inconel 718. In this paper, PVD-TiAlN-coated carbide tools were used to turn Inconel 718. Based on observing the tool wear and machined surface morphology, the main factors affecting surface quality at different cutting speeds were analyzed. The optimal cutting temperature was calculated, according to the above analysis and Archard adhesion wear model, and further cutting parameters optimization was conducted, on the basis of the proposed optimal cutting temperature. The optimized cutting parameters based on optimal cutting temperature can be considered to improve surface quality.  相似文献   

16.
17.
A finite element model is developed to predict the chip formation and phase transformation in orthogonal machining of hardened AISI 52100 steel (62HRC) using Polycristalline Cubic Boron Nitride (PCBN) tools. The model mainly includes a chip separation criterion based on critical equivalent plastic strain; a Coulomb’s law for the friction at the tool/chip interface; a material constitutive relation of velocity-modified temperature; a thermal analysis incorporating the heat dissipated from inelastic deformation energy and friction; and an annealing effect model, in which the work hardening effect may be lost or re-accumulate depending on material temperature. This fully coupled thermal-mechanical finite element analysis accurately simulates the formation of segmental chips and predicts the phase transformation on the chips, as verified by experiment. It is found that high temperatures around the secondary shear zone causes fast re-austenitization and martensite transformation, while other parts of the chips retain the original tempered martensitic structure.  相似文献   

18.
19.
Machining of aerospace and biomedical grade titanium alloys has always been a challenge because of their low conductivity and elastic modulus. Different machining methods and parameters have been adopted for high precision machining of titanium alloys. Machining of titanium alloys can be improved by microstructure optimization. The present study focuses on the effect of microstructure on machinability of Ti6Al4V alloys at different cutting speeds. Samples were subjected to different annealing conditions resulting in different grain sizes and local micro-strains (misorientation). Cutting forces were significantly reduced after annealing; consequently, sub-surface residual stresses were reduced. Deformation twinning was also observed on samples annealed at a higher temperature due to larger grain size. Initial strain free grains and deformation twinning during machining reduces the cutting force at higher cutting speed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号