首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microbial metabolomics with gas chromatography/mass spectrometry   总被引:6,自引:0,他引:6  
An analytical method was set up suitable for the analysis of microbial metabolomes, consisting of an oximation and silylation derivatization reaction and subsequent analysis by gas chromatography coupled to mass spectrometry. Microbial matrixes contain many compounds that potentially interfere with either the derivatization procedure or analysis, such as high concentrations of salts, complex media or buffer components, or extremely high substrate and product concentrations. The developed method was extensively validated using different microorganisms, i.e., Bacillus subtilis, Propionibacterium freudenreichii, and Escherichia coli. Many metabolite classes could be analyzed with the method: alcohols, aldehydes, amino acids, amines, fatty acids, (phospho-) organic acids, sugars, sugar acids, (acyl-) sugar amines, sugar phosphate, purines, pyrimidines, and aromatic compounds. The derivatization reaction proved to be efficient (>50% transferred to derivatized form) and repeatable (relative standard deviations <10%). Linearity for most metabolites was satisfactory with regression coefficients better than 0.996. Quantification limits were 40-500 pg on-column or 0.1-0.7 mmol/g of microbial cells (dry weight). Generally, intrabatch precision (repeatability) and interbatch precision (reproducibility) for the analysis of metabolites in cell extracts was better than 10 and 15%, respectively. Notwithstanding the nontargeted character of the method and complex microbial matrix, analytical performance for most metabolites fit the requirements for target analysis in bioanalysis. The suitability of the method was demonstrated by analysis of E. coli samples harvested at different growth phases.  相似文献   

2.
We report the direct introduction of biological samples into a high-resolution mass spectrometer, the LTQ-Orbitrap, as a fast tool for metabolomic studies. A proof of concept study was performed on yeast cell extracts that were introduced into the mass spectrometer by using flow injection analysis, with an acquisition time of 3 min. Typical mass spectra contained a few thousand m/z signals, 400 of which were found to be analytically relevant (i.e., their intensity was 3-fold higher than that of the background noise and they occurred in at least 60% of the acquisition profiles under identical experimental conditions). The method was validated by studies of the matrix effect, linearity, and intra-assay precision. Accurate mass measurements in the Orbitrap discriminated between isobaric ions and also indicated the elemental composition of the ions of interest with mass errors below 5 ppm, for identification purposes. The proposed structures were then assessed by MSn experiments via the linear ion trap, together with accurate mass determination of the product ions in the Orbitrap analyzer. When applied to the study of cadmium toxicity, the method was as effective as that initially developed by using LC/ESI-MS/MS for a targeted approach. The same metabolic fingerprints were also subjected to multivariate statistical analyses. The results highlighted a reorganization of amino acid metabolism under cadmium conditions in order to increase the biosynthesis of glutathione.  相似文献   

3.
Metabolites in islets of Langerhans and Escherichia coli strain DH5-alpha were analyzed using negative-mode, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). For analysis of anionic metabolites by MALDI, 9-aminoacridine as the matrix yielded a far superior signal in comparison to alpha-cyano-4-hydroxycinnamic acid, 2,5-dihydrobenzoic acid, 2,4,6,-trihydroxyacetophenone, and 3-hydroxypicolinic acid. Limits of detection for metabolite standards were as low as 15 nM for GDP, GTP, ADP, and ATP and as high as 1 muM for succinate in 1-muL samples. Analysis of islet extracts allowed detection of 44 metabolites, 29 of which were tentatively identified by matching molecular weight to compounds in METLIN and KEGG databases. Relative quantification was demonstrated by comparing the ratio of selected di- and triphosphorylated nucleotides for islets incubated with different concentrations of glucose. For islets at 3 mM glucose, concentration ratios of ATP/ADP, GTP/GDP, and UTP/UDP were 1.9 +/- 1.39, 1.12 +/- 0.50, and 0.79 +/- 0.35 respectively, and at 20 mM glucose stimulation, the ratios increased to 4.13 +/- 1.89, 5.62 +/-4.48, and 4.30 +/- 4.07 (n = 3). Analysis was also performed by placing individual, intact islets on a MALDI target plate with matrix and impinging the laser directly on the dried islet. Direct analysis of single islets allowed detection of 43 metabolites, 28 of which were database identifiable. A total of 43% of detected metabolites from direct islet analysis were different from those detected in islet extracts. The method was extended to prokaryotic cells by analysis of extracts from E. coli. Sixty metabolites were detected, 39 of which matched compounds in the MetaCyc database. A total of 27% of the metabolites detected from prokaryotes overlapped those found in islets. These results show that MALDI can be used for detection of metabolites in complex biological samples.  相似文献   

4.
Organic compounds containing a variety of functional groups have been analyzed using aerosol time-of-flight mass spectrometry. Both positive and negative laser desorption/ionization mass spectra have been acquired for compounds of relevance to ambient air particulate matter, including polycyclic aromatic hydrocarbons, heterocyclic analogues, aromatic oxygenated compounds such as phenols and acids, aliphatic dicarboxylic acids, and reduced nitrogen species such as amines. In many cases, positive ion mass spectra are similar to those found in libraries for 70-eV electron impact mass spectrometry. However, formation of even-electron molecular ions due to adduct formation also plays a major role in ion formation. Negative ion mass spectra suggest that organic compounds largely disintegrate into carbon cluster fragments (C(n)- and C(n)H-). However, information about the heteroatoms present in organic molecules, especially nitrogen and oxygen, is carried dominantly by negative ion spectra, emphasizing the importance of simultaneous analysis of positive and negative ions in atmospheric samples.  相似文献   

5.
Yun SJ  Park JW  Choi IJ  Kang B  Kim HK  Moon DW  Lee TG  Hwang D 《Analytical chemistry》2011,83(24):9298-9305
Time-of-flight secondary ion mass spectrometry (TOF-SIMS) has been a useful tool to profile secondary ions from the near surface region of specimens with its high molecular specificity and submicrometer spatial resolution. However, the TOF-SIMS analysis of even a moderately large size of samples has been hampered due to the lack of tools for automatically analyzing the huge amount of TOF-SIMS data. Here, we present a computational platform to automatically identify and align peaks, find discriminatory ions, build a classifier, and construct networks describing differential metabolic pathways. To demonstrate the utility of the platform, we analyzed 43 data sets generated from seven gastric cancer and eight normal tissues using TOF-SIMS. A total of 87?138 ions were detected from the 43 data sets by TOF-SIMS. We selected and then aligned 1286 ions. Among them, we found the 66 ions discriminating gastric cancer tissues from normal ones. Using these 66 ions, we then built a partial least square-discriminant analysis (PLS-DA) model resulting in a misclassification error rate of 0.024. Finally, network analysis of the 66 ions showed disregulation of amino acid metabolism in the gastric cancer tissues. The results show that the proposed framework was effective in analyzing TOF-SIMS data from a moderately large size of samples, resulting in discrimination of gastric cancer tissues from normal tissues and identification of biomarker candidates associated with the amino acid metabolism.  相似文献   

6.
Wang Z  Dunlop K  Long SR  Li L 《Analytical chemistry》2002,74(13):3174-3182
The availability of a suitable database is critical in a proteomic approach for bacterial identification by mass spectrometry (MS). The major limitation of the present public proteome database is the lack of extensive low-mass bacterial protein entries with masses experimentally verified for most bacteria. Here, we present a method based on mass spectrometry to create protein mass tables specifically tailored for bacterial identification. Several issues related to the detection of bacterial proteins for the purpose of database creation are addressed. Three species of bacteria, namely, Escherichia coli, Bacillus megaterium, and Citrobacter freundii, which can be found in the ambient environment, were chosen for this study. Direct matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS analysis of each bacterial extract reveals 20-29 protein components in the mass range from 2000 to 20,000 Da. HPLC fractionation of bacterial extracts followed by off-line MALDI-TOF analysis of individual fractions detects 156-423 components. Analysis of the extracts by HPLC/electrospray ionization MS shows the number of detectable proteins in the range of 46-59. Although a number of components were common to the three detection schemes employed, some unique components were found using each of these techniques. In addition, for E. coli where a large proteome database exists in the public domain, a number of masses detected by the mass spectrometric methods do not match with the proteome database. Compared to the public proteome database, the mass tables generated in this work are demonstrated to be more useful for bacterial identification in an application where the bacteria of interest have limited protein entries in the public database. The implication of this work for future development of a comprehensive mass database is discussed.  相似文献   

7.
The structural elucidation of organic compounds in complex biofluids and tissues remains a significant analytical challenge. For mass spectrometry, the manual interpretation of collision-induced dissociation (CID) mass spectra is cumbersome and requires expert knowledge, as the fragmentation mechanisms of ions formed from small molecules are not completely understood. The automated identification of compounds is generally limited to searching in spectral libraries. Here, we present a method for interpreting the CID spectra of the organic compound's protonated ions by computing fragmentation trees that establish not only the molecular formula of the compound and all fragment ions but also the dependencies between fragment ions. This is an important step toward the automated identification of unknowns from the CID spectra of compounds that are not in any database.  相似文献   

8.
An algorithm for bacterial identification using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry is being developed. This mass spectral fingerprint comparison algorithm is fully automated and statistically based, providing objective analysis of samples to be identified. Based on extraction of reference fingerprint ions from test spectra, this approach should lend itself well to real-world applications where samples are likely to be impure. This algorithm is illustrated using a blind study. In the study, MALDI-MS fingerprints for Bacillus atrophaeus ATCC 49337, Bacillus cereus ATCC 14579T, Escherichia coli ATCC 33694, Pantoea agglomerans ATCC 33243, and Pseudomonas putida F1 are collected and form a reference library. The identification of test samples containing one or more reference bacteria, potentially mixed with one species not in the library (Shewanella alga BrY), is performed by comparison to the reference library with a calculated degree of association. Out of 60 samples, no false positives are present, and the correct identification rate is 75%. Missed identifications are largely due to a weak B. cereus signal in the bacterial mixtures. Potential modifications to the algorithm are presented and result in a higher than 90% correct identification rate for the blind study data, suggesting that this approach has the potential for reliable and accurate automated data analysis of MALDI-MS.  相似文献   

9.
A fast atom bombardment (FAB) mass spectrometric method has been developed for characterizing arsenosugar compounds. These compounds are of particular interest not only because their biochemistry requires further investigation but also because they are present at relatively high concentrations in commercial seaweed food products. FAB was used for the efficient generation of gas-phase ions of the various arsenosugar compounds. Negative-ion detection of such ions was found to be more sensitive than positive-ion detection due to the presence of negatively charged substituents. Negative-ion collision-induced dissociation (CID) tandem mass spectrometry (MS) of the [M - H](-) precursor ions results in the formation of numerous characteristic product ions via charge-remote fragmentation. These product ions provide abundant structural information for arsenosugar characterization. Separation of the arsenosugar-originating precursor ions from the matrix ions, always present in FAB mass spectra, is achievable using an analyzer resolution of 3000. This resolution allows for accurate selection of a precursor ion for subsequent CID experiments. However, by switching to a resolution of 1000, the quality of the tandem mass spectra can be slightly improved. Such an improvement is especially useful when analyzing nanogram amounts of arsenosugars. Furthermore, it was demonstrated that positive-ion tandem MS provides complementary information for the structural characterization of the arsenosugars examined. The mass spectrometric procedures developed in this study were further applied for the characterization an arsenosugar present in a partially purified algal (Sargassum lacerifolium) extract.  相似文献   

10.
Hu A  Tsai PJ  Ho YP 《Analytical chemistry》2005,77(5):1488-1495
In this paper, we propose a new strategy for identifying specific bacteria in bacterial mixtures by using CE-selective MS/MS of peptide marker ions associated with the bacteria of interest. We searched the CE-MS/MS spectra acquired from the proteolytic digests of pure bacterial cell extracts against protein databases. The identified peptides that match the protein associated with the corresponding species were selected as marker ions for bacterial identification. Specific peptide marker ions were obtained for each of the following three pathogens: Pseudomonas aeruginasa, Staphylococcus aureus, and Staphylococcus epidermidis. To identify a bacterial species in a sample, we performed CE-MS/MS analysis of the selected marker ions in the proteolytic digest of the cell extract and then performed protein database searches. The selected peptides that we identified correctly from Xcorr values ranking at the top of the search results allowed us to identify the corresponding bacterial species present in the sample. We have applied this method successfully to the identification of various mixtures of the three pathogens. Even minor bacterial species present at a concentration of 1% can be identified with great confidence. This method for CE-MS/MS analysis of bacteria-specific marker peptides provides excellent selectivity and high accuracy when identifying bacterial species in complex systems. In addition, we have used this approach to identify P. aeruginasa in a saliva sample spiked with E.coli and P. aeruginasa.  相似文献   

11.
A chip-based capillary electrophoresis/mass spectrometry (CE/MS) system is described for the CE separation and on-line electrospray detection of carnitine and selected acylcarnitines from mixtures of analytical standards as well as extracts of fortified human urine. Chip-based CE/MS experiments in two different laboratories were carried out using a triple-quadrupole mass spectrometer and a quadrupole time-of-flight (QTOF) mass spectrometer, respectively. The glass chips used with both systems were comparably equipped with a microfabricated capillary electrophoresis (CE) channel but with different electrosprayers. The quadrupole chip-based CE/MS experiments employed a miniature coupled microsprayer, which allowed coupling of the microelectrospray process via a micro liquid junction at the exit of the CE capillary channel. Selected ion monitoring (SIM) CE/MS experiments were employed for all of the quadrupole CE/MS work. The QTOF CE/MS full-scan single MS and MS/MS experiments were carried out in another laboratory using accurate mass measurement TOF mass spectrometry techniques. The electrospray process that was employed with the QTOF system differed in that an inserted nanoelectrospray capillary needle was carefully affixed into a flat-bottomed hole that was aligned with the CE channel exit orifice. SIM CE/MS using the described quadrupole system provided acceptable ion current electropherograms from fmole levels from analytical standard solutions of carnitine and acylcarnitines that were manually injected (loaded) onto the chip. In addition, the corresponding electropherograms for human urine fortified with the target carnitine and acylcarnitines at a 10-20 microg/mL (35-124 microM) level were obtained via SIM CE/MS techniques. The measured CE separation efficiency for the SIM CE/MS electropherograms was determined to be 2860 plates (peak width at half-height method or N = 5.54(T/WO.5(2)), and carnitine and three acylcarnitines were separated in less than 48 s. In contrast, using quadrupole-TOF technologies, the same samples could be diluted by a factor of 2-4 to obtain a comparable detector response for the target compounds. In the full-scan, single mass analyzer mode (m/z 150-500), the CE separation efficiency was measured to be 2600 plates, but mass measurement accuracy was less than 5.0 ppm for the quaternary cations. In the CE/MS/MS mode, full-scan collision-induced dissociation (CID) mass spectra were obtained with a mass accuracy of < or =10 ppm for the higher mass ions and < or =27 ppm for the lower mass product ions. These results demonstrate the feasibility for on-chip CE separation and electrospray mass spectrometric detection for these important compounds in synthetic mixtures, as well as in human urine extracts.  相似文献   

12.
Ho J  Tan MK  Go DB  Yeo LY  Friend JR  Chang HC 《Analytical chemistry》2011,83(9):3260-3266
A surface acoustic wave-based sample delivery and ionization method that requires minimal to no sample pretreatment and that can operate under ambient conditions is described. This miniaturized technology enables real-time, rapid, and high-throughput analysis of trace compounds in complex mixtures, especially high ionic strength and viscous samples that can be challenging for conventional ionization techniques such as electrospray ionization. This technique takes advantage of high order surface acoustic wave (SAW) vibrations that both manipulate small volumes of liquid mixtures containing trace analyte compounds and seamlessly transfers analytes from the liquid sample into gas phase ions for mass spectrometry (MS) analysis. Drugs in human whole blood and plasma and heavy metals in tap water have been successfully detected at nanomolar concentrations by coupling a SAW atomization and ionization device with an inexpensive, paper-based sample delivery system and mass spectrometer. The miniaturized SAW ionization unit requires only a modest operating power of 3 to 4 W and, therefore, provides a viable and efficient ionization platform for the real-time analysis of a wide range of compounds.  相似文献   

13.
Several methods to obtain low-ppm mass accuracy have been described. In particular, online or offline lock mass approaches can use background ions, produced by electrospray under ambient conditions, as calibrants. However, background ions such as protonated and ammoniated polydimethylcyclosiloxane ions have relatively weak and fluctuating intensity. To address this issue, we implemented dynamic offline lock mass (DOLM). Within every MS1 survey spectrum, DOLM dynamically selected the strongest n background ions for statistical treatments and m/z recalibration. We systematically optimized the mass profile abstraction method to find one single m/z value to represent an ion and the number of calibrants. To assess the influence of the intensity of the analyte ions, we used tandem mass spectroscopy (MS/MS) datasets obtained from MudPIT analyses of two protein samples with different dynamic ranges. DOLM outperformed both external mass calibration and offline lock mass that used predetermined calibrant ions, especially in the low-ppm range. The unique dynamic feature of DOLM was able to adapt to wide variations in calibrant intensities, leading to averaged mass error center at 0.03 ± 0.50 ppm for precursor ions. Such consistently tight mass accuracies meant that a precursor mass tolerance as low as 1.5 ppm could be used to search or filter post-search DOLM-recalibrated MS/MS datasets.  相似文献   

14.
A method was developed to determine nine N-nitrosamines in wastewater on the basis of solid-phase extraction and liquid chromatography mass spectrometry using a linear ion trap-orbitrap hybrid instrument at high mass resolution. Analytes and five deuterated internal standards were preconcentrated by solid-phase extraction. Positive electrospray ionization resulted in protonated molecular ions of all nitrosamines. One to three product ions were formed by collision-induced dissociation or higher energy C-trap dissociation. The signal intensity of the product ions differed up to a factor of 3 between the two techniques. The molecular ions were usually used for quantification, because of the better sensitivity, and the product ions for confirmation. An actual mass resolving power of 25 000-40 000 ensured a sufficient selectivity to distinguish all molecular and product ions from interfering background ions. Only for N-nitrosomorpholine was a coeluting isobaric molecular ion detected in wastewater samples, which, however, formed different product ions. The mass accuracy was between -12 ppm at m/z 55 and 0 ppm at m/z 205 and did not change for more than 5 ppm over a sample sequence of 20 h analysis time. The optimized method allowed quantifying nine N-nitrosamines in drinking water and wastewater samples down to method detection limits of 0.3-3.9 ng/L at instrumental detection limits of 2-14 pg on column. Recoveries over the whole method were between 75 and 125% for six compounds, but considerably lower for three compounds, probably due to strong matrix effects causing a signal suppression of up to 95% in wastewater samples. N-Nitrosodimethylamine and N-nitrosomorpholine were the most abundant compounds (3-22 ng/L) in samples from two wastewater treatment plants, another four nitrosamines (N-nitrosopyrrolidone, -piperidine, -diethylamine, and -dibutylamine) were also detected. Our study demonstrates that the LTQ Orbitrap is a powerful instrument to quantify low molecular weight compounds at the picogram level in complex matrixes with both a high sensitivity and selectivity.  相似文献   

15.
A new method for isolating ions for tandem mass spectrometry analyses in Fourier transform mass spectrometry is illustrated. The method employs an infrared laser to dissociate completely the undesired ions. The selected ions are excited to an orbit away from the degradative portion of the laser beam. Ion isolation was accomplished and tandem mass spectrometry experiments were performed on model oligosaccharides and compounds from biological samples.  相似文献   

16.
A chip-based capillary electrophoresis/mass spectrometry (CE/MS) system is described for the on-chip separation and coupled electrospray detection of selected small drug molecule compounds. These studies include the quantitative determination of carnitine and acetylcarnitine in analytical standard solutions as well as imipramine and desipramine in fortified human plasma samples. A clinical human plasma sample was also analyzed following the normal administration of desipramine to a volunteer, and the parent drug was determined using the described chipbased CE/MS technique. In each instance, stable isotope-incorporated internal standards were used. The chip-based CE system was microfabricated from glass and coupled to a micro ion spray device constructed in-house. The atmospheric pressure ionization system employed in this work was a PE Sciex API III tandem triple quadrupole system operated in the selected ion monitoring (SIM) mode. The results from the work reported here demonstrate the feasibility for carrying out rapid (30 s) chipbased quantitative CE/MS determinations of samples containing small-molecule compounds. Using SIM CE/ MS techniques, the described API III quadrupole system provided acceptable ion current electropherograms from subpicomole levels of the targeted compounds loaded onto the chip. The corresponding electropherograms for the standard solution of carnitines at the 1-500 microg/mL level were obtained via SIM CE/MS techniques (R2 > 0.99). In addition, analyses of fortified samples of imipramine desipramine were measured relative to their corresponding d3 internal standards to obtain calibration curves ranging from 5 to 500 microg/mL in human plasma (R2 > 0.99). The intra-assay precision ranged from 4.1 to 7.3% RSD. The intra-assay accuracy ranged from 94.0 to 104%. These results demonstrate the feasibility for on-chip CE separation and electrospray mass spectrometric determination in applications for bioanalytical measurements for these important compounds in synthetic mixtures and human plasma extracts.  相似文献   

17.
Recently, it has been demonstrated that bacteria can be characterized using whole cells and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). However, identification of specific bacterial proteins usually requires analysis of cellular fractions or purified extracts. Here, the first application of Fourier transform mass spectrometry (FTMS) to analysis of bacterial proteins directly from whole cells is reported. It is shown that accurate mass MALDI-FTMS can be used to characterize specific ribosomal proteins directly from Escherichia coli cells. High-accuracy mass measurements and high-resolution isotope profile data confirm posttranslational modifications proposed previously on the basis of low-resolution mass measurements. Seven ribosomal proteins from E. coli whole cells were observed with errors of less than 27 ppm. This was accomplished directly from whole cells without fractionation, concentration, or overt overexpression of characteristic cellular proteins. MALDI-FTMS also provided information regarding E. coli lipids in the low-mass region. Although ions with m/z values below 1000 have been observed by FTMS of whole cells, this represents the first report of detection of ions in the 5000 to 10,000 m/z range by MALDI-FTMS using whole cells.  相似文献   

18.
M J Cole  C G Enke 《Analytical chemistry》1991,63(10):1032-1038
When phospholipids ionized by fast atom bombardment undergo collisionally induced dissociation (CID), they cleave at specific bonds between the functional groups contained on the lipid. These cleavages are common to all classes of phospholipids. By taking advantage of this fact, a general scheme has been developed that uses a triple-quadrupole mass spectrometer to rapidly characterize the phospholipid content and structures present in crude lipid extracts. This scheme is based on fast atom bombardment ionization of a crude lipid extract and on the combination of positive-ion neutral-loss and parent scans and negative-ion daughter scans. Neutral-loss and parent scans provide independent diagnostic mass spectra for each of many specific phospholipid classes, while daughter scans provide the emperical formulas and positions of the fatty acyl constituents on each phospholipid. An automated tandem mass spectrometry (MS/MS) instrument can perform an extensive phospholipid screening on a single sample. A useful mass profile of the phosphatidylethanolamine species present in a 1-pg sample of mixed phospholipids (equivalent to ten Escherichia coli cells) has been obtained. The spectra are reproducible and proportional to concentration over at least the five-logarithm range of cell concentrations studied. A rapid extraction procedure combined with the automated instrument control program produces profiles of the phospholipid classes, along with fatty acyl empirical formulas and position information, on selected phospholipid species, in a few minutes, from a single sample.  相似文献   

19.
Xiang X  Ko CY  Guh HY 《Analytical chemistry》1996,68(21):3726-3731
An ion-exchange chromatograph/electrospray ionization mass spectrometer (IC/ESI-MS) was used successfully to identify organic and inorganic species present in topiramate tablets. An ion suppressor is placed between the column and detectors to replace sodium ions in the mobile phase with hydrogen ions supplied by the suppressor. The ensuing combination of the hydrogen ions with the mobile phase hydroxide ions produces water and thus allows simultaneous ion detection by an ion conductivity detector and a mass spectrometer. Analytes, including lactate, glycolate, chloride, formate, sulfate, and oxalate, were unambiguously identified by matching the mass spectra and retention times with those of the authentic compounds. Due to its capability of detecting positive and negative as well as neutral species, ESI-MS provides valuable information which is not available with ion conductivity detection alone. Though the coupling of ion-exchange chromatography to mass spectrometry has been reported previously, this is the first demonstration of IC/ESI-MS for the identification of unknown species in real samples. Finally, with the use of deuterium/carbon-13 labeling and MS/MS techniques, we have confirmed that oxalic acid (HOOC-COOH) is formed from formic acid (HCOOH) at the electrospray interface in the presence of the electric field. This observation not only confirms the identity of an unknown peak, but it also provides new insight into chemistry that can take place during electrospray ionization.  相似文献   

20.
A classic problem in analytical chemistry has been determination of individual components in a mixture without availability of the pure individual components. Measurement of the distribution of isotopomers in a labeled compound or mixture of labeled compounds is an example of this problem that is commonly encountered when stable isotopically labeled metabolites are used to determine in vivo kinetics and metabolism. We present a method that uses the measured mass spectral data of the unlabeled material to represent any and all combinations of isotopomer variations of that material and to determine abundances of these isotopomers. Although examples of the method are presented for gas chromatography/mass spectrometry, the method is applicable to any type of mass spectrometry data. The method also accounts for errors induced by mass spectrometer ionization and resolution effects. To demonstrate this method, we determined the isotopomer distributions of samples of 13C-labeled leucine and glucose for both highly enriched isotopomers and labeled isotopomers present in low abundance against a natural isotopic abundance background. The method accurately and precisely determined isotopomer identity and abundance in the labeled materials without adding noise or error that was not inherent in the original mass spectral data. In examples shown here, isotopomer uncertainties were calculated with relative standard errors of <1% from good quality mass spectral data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号