首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The combination of a metal island film with a dielectric multilayer represents a novel approach for preparation of spectrally selective absorbers. Metal island films show exceptional optical properties caused by the optical excitation of surface plasmon modes. The plasmon resonance frequency depends on the size and shape of the islands and is influenced by the deposition parameters. The first type of samples represents a silver island film in an ultra thin Al2O3 film. We analyzed these samples by means of spectrophotometry. The recorded spectra allow the calculation of the optical constants of the silver island films. These show a maximum absorptance up to 40 %. Finally, we incorporated ultrathin metal‐dielectric‐composite films on a silver/alumina basis into multilayer stacks to design tailored spectrally selective absorber coatings. The stack absorptance comes close to 100 %.  相似文献   

2.
In situ reflectance interferometry (RI) at 400 nm wavelength was used to investigate the effect of the substrate negative bias on the microstructure of aluminium nitride (AlN) films deposited at room temperature on Si substrates by magnetron sputtering. Their surface reflectance recorded during film deposition promptly yields real-time information on the microstructures developed under oxygen contamination and bias change. Specifically, the refractive index n and the extinction coefficient k are deduced from reflectance using appropriate multilayer optical models and validated by spectroscopic ellipsometry. These optical constants correlate appreciably with the microstructure that evolves between columnar-crystallized and purely amorphous phases including in-between amorphous states containing dispersed nano-AlN grains. These microstructures were identified using ex situ energy dispersive X-ray spectroscopy, transmission electron microscopy and diffraction, X-ray diffraction and Auger electron spectroscopy. The simple and cost-effective in situ RI thus appears a powerful tool in controlling the microstructures of thin AlN films for desired applications.  相似文献   

3.
The optical constants of ion-beam-sputtered SiC films have been measured by ellipsometry in the 190 to 950 nm range. The set of data has been extended both toward shorter and longer wavelengths with data in the literature, along with inter- and extrapolations, in order to obtain a self-consistent set of data by means of Kramers-Kr?nig analysis. All data correspond to films that were deposited by sputtering on nonheated substrates, and hence they are expected to be amorphous. A bandgap of 1.9 eV for the films was fitted from the obtained optical constants. A good global accuracy of the data was estimated through the use of various sum rules. The consistent dataset includes the visible to the extreme ultraviolet (EUV); this large spectrum of characterization will enable the design of multilayer coatings that combine a high reflectance in parts of the EUV with desired performance at a secondary range, such as the visible. To our knowledge, this paper provides the first compilation of the optical constants of amorphous SiC films.  相似文献   

4.
The optical constants of ion-beam-sputtered B?C films have been measured by ellipsometry in the 190-950 nm range. The set of data has been extended toward both shorter and longer wavelengths with data in the literature, along with interpolations and extrapolations, in order to obtain a self-consistent set of data by means of Kramers-Kr?nig analysis. All data correspond to films that were deposited by sputtering on nonheated substrates, and hence they are expected to be amorphous. The B?C bandgap was calculated as a fitting parameter of Tauc equations for indirect transitions using the present optical constants. Good global accuracy of the data was estimated through the use of various sum rules. The consistent data set includes the visible to the extreme UV (EUV); this large spectrum of characterization will enable the design of multilayer coatings that combine a relatively high reflectance in parts of the EUV with a desired performance at a secondary range, such as the visible.  相似文献   

5.
Modelling the NIR/VIS/UV optical constants of thin solid films: An oscillator model approach Based on a multioscillator approach, we demonstrate the determination of optical constants of different optical coating materials. The advanced LCalc‐software allows calculating the dielectric function as well as refractive index and extinction coefficient through a fit of transmittance and reflectance spectra measured at one or several angles of incidence. Sufficiently accurate spectrophotometric measurements are carried out by means of self‐developed VN‐ The thus obtained optical constants are automatically Kramers‐Kronig‐consistent and in reasonable correspondence to various kind of side information available about the coatings. This is demonstrated for dielectric oxide coatings as well as for one transparent conductive oxide (ITO) and a metal layer (aluminium). In application to reproducibility experiments, the method allows estimating process‐inherent stochastic variations in optical constants, which represent themselves an essential input for advanced computational manufacturing runs for design optimization prior to deposition.  相似文献   

6.
The characterization of optical multilayer coatings has been a challenging task for thin-film scientists and engineers because of the various complex, interdependent layer parameters that exist in the system. Spectroscopic phase-modulated ellipsometry has some advantages in the postanalysis of the layer parameters of such multilayer coatings because it suitably models the layer structure with respect to the ellipsometric measurements. An algorithm to characterize multilayer optical coatings with large numbers of layers has been described by spectroscopic ellipsometry by use of a discrete spectral zone fitting approach. A 23-layer multilayer highly reflecting mirror has been characterized by this technique in the wavelength range 280-1000 nm. The ellipsometric spectra (? and D versus wavelength) have been fitted separately in three wavelength regimes. Fitting the ellipsometric spectra in the wavelength regime of 700-1000 nm permitted the sample structure to be determined. The data were then fitted in the wavelength range 280-340 nm, i.e., near the fundamental absorption edge of TiO(2), to yield the dispersion relation for the optical constants of TiO(2). Finally, the data were fitted in the wavelength range 340-700 nm, and the true dispersion of the refractive index of TiO(2), along with the best-fitting sample structure, was obtained.  相似文献   

7.
Yan-Zuo Tsai 《Thin solid films》2010,518(24):7523-7526
The CrAlSiN/W2N multilayer coatings were fabricated by DC magnetron sputtering. The bilayer periods of multilayer films were controlled in the range from 3 to 20 nm. The cross-sectional structure of multilayer and monolayer coatings was evaluated by transmission electron microscopy (TEM). The wear behavior of monolayer and multilayer coatings was investigated by a pin-on-disc tribometer. The nano-scratch tester was employed to study the crack propagation of scratched coatings. The images of wear scars were observed by optical microscopy (OM). The cross-sectional image of scratched films was analyzed by transmission electron microscopy (TEM). Owing to the nano-layered structure and higher hardness (or H/E ratio), the multilayer coatings exhibited better wear resistance than homogeneous films. The coefficient of friction of CrAlSiN/W2N multilayer coating with a bilayer period of 8 nm was around 0.6, and that of CrAlSiN homogeneous film was about 0.8. Different crack propagation mechanisms of CrAlSiN/W2N multilayer and CrAlSiN monolayer coatings were proposed and discussed.  相似文献   

8.
The technique of oblique angle deposition has been extended to the fabrication of nanostructured metal coatings on the tips of standard silica optical fibers by thermal evaporation. The coatings are initiated as metal island films, which grow into extended rodlike structures as the deposition continues. The nanorod coatings demonstrate excellent surface-enhanced Raman scattering performance with variability of less than 10% as shown by direct measurements off the fiber tip with thiophenol as a test analyte. However, in the remote sensing configuration, the nanorod structures perform no better than thin metal island films. This appears to be mainly due to reduced transmission when nanorod lengths exceed ~100 nm. Moreover, the variability of remote measurements is increased to 18%. This is believed to be due to variations in coupling efficiency.  相似文献   

9.
Hydrogenated nanocrystalline silicon (nc-Si:H) thin films prepared in a home-built radio-frequency (rf) plasma enhanced chemical vapour deposition (PECVD) system have been studied. The rf powers were fixed in the range of 5 W-80 W. The optical properties and crystallinity of the films were studied by X-ray diffraction (XRD), Micro-Raman scattering spectroscopy, high resolution transmission electron microscope (HRTEM), and optical transmission and reflection spectroscopy. The XRD and Micro-Raman scattering spectra were used to investigate the evidence of crystallinity in order to determine the crystallite sizes and crystalline volume fraction in the films. The HRTEM image of the film was used to correlate with the crystallinity that was determined from XRD and Micro-Raman scattering spectra. Optical constants such as refractive index, optical energy gap, Tauc slope, Urbach energy and ionic constants were obtained from the optical transmission and reflectance spectra. From the results, it was interesting to found that the optical constants showed a good correlation with the crystallinity within the variation of rf power. Also, the ionic constants of the films showed an indication of the degree of crystallinity in the films. The variation of the optical energy gap with the rf power based on structure disorder and the quantum confinement effect is discussed.  相似文献   

10.
The optical constants of Yb films have been determined in the 23-1700 eV spectral range from transmittance measurements performed in situ on Yb films deposited by evaporation in ultrahigh vacuum conditions. Yb films were deposited over grids coated with a thin carbon film. Transmittance measurements were used to obtain the extinction coefficient of Yb films at each individual photon energy investigated. The energy range investigated encompasses Yb edges from M(4,5) to O(2,3). The current results, along with data in the literature, show that Yb has an interesting low-absorption band in the approximately 12-24 eV range, which may be useful for the development of transmittance filters and multilayer coatings. The current data along with literature data and extrapolations were used to obtain n, the real part of the complex refractive index, using a Kramers-Kr?nig analysis. The application of the sum rules showed a good consistency of the results.  相似文献   

11.
Wolf R  Birken HG  Blessing C  Kunz C 《Applied optics》1994,33(13):2683-2694
The optical constants of gold deposited on 300-nm-thick freestanding polyimide films have been measured in the energy range of 40-1350 eV. The optical constants of the polyimide films were known from a previous investigation. By performing both transmission measurements with Kramers-Kronig analysis and multiangle reflection measurements with analysis by fitting to a Fresnel multilayer model including roughness, one could carry out a detailed error analysis. In the energy range above 500 eV systematic deviations between the results obtained by both methods were found. For gold films the discrepancies can be attributed to deviations from Beckmann-type behavior at small grazing-incidence angles.  相似文献   

12.
《Vacuum》2012,86(4):422-428
Composite thin films of HfO2:SiO2 with wide range of relative composition from 100:0 (pure HfO2) to 10:90 have been deposited on fused silica substrates by co-evaporation technique and the optical properties of the films have been studied by measuring the transmission spectra of the samples by spectrophotometer. Different important optical parameters viz., band gap, refractive index and absorption coefficients of the samples have been obtained by fitting the measured optical spectra with theoretically generated spectra and the variation of the optical constants as a function of SiO2 content in the films have been obtained. Two different dispersion models viz., the single effective oscillator model and the Tauc–Lorentz model have been used to generate the theoretical spectra in the above fitting procedure. X-ray reflectivity (XRR) measurement technique has been used to find the densities of the films in order to explain the observed variation in optical properties of the films with increase in SiO2 content.  相似文献   

13.
Multilayer dielectric coatings deposited by e-beam evaporation have been characterised by the phase modulated spectroscopic ellipsometer (PMSE). Measurements have been done on various multilayer thin films devices e.g., high reflectivity mirror, narrow band filter, beam combiner, beam splitter, etc. consisting of several bilayers of TiO2/SiO2. Results have been shown here for the first two samples. The measured Ellipsometry spectra are fitted with theoretical spectra generated assuming appropriate models regarding the sample structures. Optical constants of the substrates and the SiO2 films have been supplied and trial dispersion relations have been used for the optical constants of the TiO2 layers. The fittings have been done by minimising the squared difference (χ2) between the measured and calculated values of the ellipsometric parameters (ψ and Δ) and accurate information have been derived regarding the thickness and refractive indices of the different layers.  相似文献   

14.
Metal island films show a characteristic absorption peak related to the surface plasmon resonance of free electrons. This kind of film can be used in absorbing coatings, together with dielectric layers. Such absorbing multilayer coatings, with and without the gradient of the silver mass thickness in metal island films throughout the coating, have been deposited by electron beam evaporation. It is shown experimentally that coatings with a gradient in the mass thickness of silver nanoparticles have higher absorption than equivalent nongradient coatings with the same total mass thickness of silver nanoparticles.  相似文献   

15.
Metal island films of noble metals are obtained by deposition on glass substrates during the first stage of evaporation process when supported metal nanoparticles are formed. These films show unique optical properties, owing to the localized surface plasmon resonance of free electrons in metal nanoparticles. In the present work we study the optical properties of gold metal island films deposited on glass substrates with different mass thicknesses at different substrate temperatures. The optical characterization is performed by spectroscopic ellipsometry at different angles of incidence and transmittance measurements at normal incidence in the same point of the sample. Fitting of the ellipsometric data allows determining the effective optical constants and thickness of the island film. A multiple oscillator approach was used to successfully represent the dispersion of the effective optical constants of the films.  相似文献   

16.
Composite thin films of HfO2:SiO2 with wide range of relative composition from 100:0 (pure HfO2) to 10:90 have been deposited on fused silica substrates by co-evaporation technique and the optical properties of the films have been studied by measuring the transmission spectra of the samples by spectrophotometer. Different important optical parameters viz., band gap, refractive index and absorption coefficients of the samples have been obtained by fitting the measured optical spectra with theoretically generated spectra and the variation of the optical constants as a function of SiO2 content in the films have been obtained. Two different dispersion models viz., the single effective oscillator model and the Tauc–Lorentz model have been used to generate the theoretical spectra in the above fitting procedure. X-ray reflectivity (XRR) measurement technique has been used to find the densities of the films in order to explain the observed variation in optical properties of the films with increase in SiO2 content.  相似文献   

17.
A new optical monitoring system has been developed that allows recording of transmission spectra in the wavelength range between 400 and 920 nm of a growing optical coating during deposition. Several kinds of thin film sample have been prepared by use of a hybrid monitoring strategy that is essentially based on a combination of quartz monitoring and in situ transmission spectra measurements. We demonstrate and discuss the applicability of our system for reengineering procedures of high-low stacks and measurements of small vacuum or thermal shifts of optical coatings.  相似文献   

18.
For nearly two centuries, researchers have sought novel methods to increase light transmission in optical systems, as well as to eliminate unwanted reflections and glare. Anti-reflection coatings and surfaces have enabled the increasing performance demands of optical components fabricated from glass-based optical materials. With the current trend of technology moving towards optically transparent polymeric media and coatings, the need for anti-reflection technology and environmentally benign processing methods for polymeric materials independent of shape or size has become quite apparent. We describe an economical, aqueous-based process controlled at the molecular level that simultaneously coats all surfaces of almost any material. Systematically designed nanoporous polymer films are used, which are suitable for optical applications operating at both visible and near-infrared wavelengths. These high-efficiency anti-reflection coatings are created from phase-separated polyelectrolyte multilayer films that undergo a reversible pH-induced swelling transition. Furthermore, such films, easily patterned by an inkjet printing technique, possess potential for pH-responsive biomaterial and membrane applications.  相似文献   

19.
Molybdenumoxide (MoOx) thin films can change their optical properties upon exposure to hydrogen. Since the film properties strongly depend on process parameters we have studied how the films are affected by the total pressure during deposition. Stoichiometric and sub-stoichiometric MoOx films were prepared by reactive direct current magnetron sputtering in an atmosphere of argon and oxygen. Substoichiometric films were coated with platinum as a catalyst and were colored in diluted hydrogen atmosphere and bleached in air. Optical spectroscopy, X-ray reectometry, spectroscopic ellipsometry and simulations of the measured spectra were used to characterize the films ex situ. In situ switching characteristics as revealed by optical spectroscopy and changes in stress were measured as well. We find that the total pressure during sputter deposition has a strong influence on the optical constants, the film density, and the sputter rate. The mechanical stresses and switching Preprint submitted to Elsevier Science 10 March 2006 cycles during the film coloration and bleaching also strongly depend on the total pressure. The influence of the sputter pressure on film properties is explained by the kinetics during the sputter process.  相似文献   

20.
Laser-induced coalescence of silver nanoparticles embedded in thin plasma polymer films has been used to generate permanent submicrometer structures in the films, which exhibit unusual optical properties. Scanning-electron-microscope images and spatially resolved optical transmission spectra reveal the changes in the nanostructure of the films that are due to the irradiation. The structural modifications result from thermally induced coalescence of the irradiated nanoparticles and are accompanied by significant changes in the optical transmission spectra. A planar micro-optical element has been generated in this way, and its optical properties have been characterized by means of the depth resolution of a confocal microscope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号