首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vibration suppression in astronomical adaptive optics (AO) systems has gathered great attention in the context of next-generation instrumentation for current telescopes and future Extremely Large Telescopes. Laser tomographic AO systems require natural guide stars to measure the low-order modes such as tip-tilt (TT) and TT-anisoplanatism. To increase the sky coverage, the guide stars are often faint, thus requiring lower temporal sampling frequencies to work on a more favorable signal-to-noise regime. Such sampling frequencies can be of the order of, or even lower than, the range of frequencies where vibrations are likely to appear. Ideally, vibrations affecting the low-order modes could be corrected at the higher laser loop frame rate using an upsampling procedure. This paper compares the most relevant solutions proposed hitherto to a novel multirate algorithm using the linear-quadratic-Gaussian (LQG) approach capable of upsampling the correction to further reduce the impact of vibrations. Results from numerical Monte Carlo simulations span a large range of parameters from pure sinusoids to relatively broad peak vibrations, covering the likely-to-be signals in a realistic AO system. The improvement is shown at sampling frequencies from 20 to 800 Hz, including below the vibration itself, in the example of 29.5 Hz on a Thirty Meter Telescope-like scenario. The multirate LQG ensures the least residual for both faint and bright stars for all the peak widths considered based on telemetry from the Keck Observatory.  相似文献   

2.
The adaptive optics minimum variance control problem is formulated as a linear-quadratic-Gaussian optimization. The formulation incorporates the wavefront sensor frame integration in discrete-time models of the deformable mirror and incident wavefront. It shows that, under nearly ideal conditions, the resulting minimum variance controller approaches the integral controller commonly used in adaptive optics systems. The inputs to the controller dynamics are obtained from a reconstructor with the maximum a posteriori structure that uses the estimation error covariance of the wavefront error. The ideal conditions assumed to obtain the integral controller are as follows; isotropic first-order (but nonstationary) temporal atmospheric aberrations, no computational loop delay, and no deformable mirror dynamics. The effects of variations in these conditions are examined.  相似文献   

3.
The woofer-tweeter concept in adaptive optics consists in correcting for the turbulent wavefront disturbance with a combination of two deformable mirrors (DMs). The woofer corrects for temporally slow-evolving, spatially low-frequency, large-amplitude disturbances, whereas the tweeter is generally its complement, i.e., corrects for faster higher-order modes with lower amplitude. A special feature is that in general both are able to engender a common correction space. In this contribution a minimum-variance solution for the double stage woofer-tweeter concept in adaptive optics systems is addressed using a linear-quadratic-Gaussian approach. An analytical model is built upon previous developments on a single DM with temporal dynamics that accommodates a double-stage woofer-tweeter DM. Monte Carlo simulations are run for a system featuring an 8×8 actuator DM (considered infinitely fast), mounted on a steering tip/tilt platform (considered slow). Results show that it is essential to take into account temporal dynamics on the estimation step. Besides, unlike the other control strategies considered, the optimal solution is always stable.  相似文献   

4.
We present a new method of calibrating adaptive optics systems that greatly reduces the required calibration time or, equivalently, improves the signal-to-noise ratio. The method uses an optimized actuation scheme with Hadamard patterns and does not scale with the number of actuators for a given noise level in the wavefront sensor channels. It is therefore highly desirable for high-order systems and/or adaptive secondary systems on a telescope without a Gregorian focal plane. In the latter case, the measurement noise is increased by the effects of the turbulent atmosphere when one is calibrating on a natural guide star.  相似文献   

5.
The standard adaptive optics system can be viewed as a sampled-data feedback system with a continuous-time disturbance (the incident wavefront from the observed object) and discrete-time measurement noise. A common measure of the performance of adaptive optics systems is the time average of the pupil variance of the residual wavefront. This performance can be related to that of a discrete-time system obtained by lifting the incident and residual wavefronts. The corresponding discrete-time model is derived, and the computation of the adaptive optics system residual variance is based on that model. The predicted variance of a single mode of an adaptive optics system is shown to be the same as that obtained via simulation (as expected). The discrete-time prediction is also shown to be superior to a continuous-time approximation of the adaptive optics system.  相似文献   

6.
We apply robust control techniques to an adaptive optics system including a dynamic model of the deformable mirror. The dynamic model of the mirror is a modification of the usual plate equation. We propose also a state-space approach to model the turbulent phase. A continuous time control of our model is suggested, taking into account the frequential behavior of the turbulent phase. An H(infinity) controller is designed in an infinite-dimensional setting. Because of the multivariable nature of the control problem involved in adaptive optics systems, a significant improvement is obtained with respect to traditional single input-single output methods.  相似文献   

7.
We present methods used to determine the linear or nonlinear static response and the linear dynamic response of an adaptive optics (AO) system. This AO system consists of a nonlinear microelectromechanical systems deformable mirror (DM), a linear tip-tilt mirror (TTM), a control computer, and a Shack-Hartmann wavefront sensor. The system is modeled using a single-input-single-output structure to determine the one-dimensional transfer function of the dynamic response of the chain of system hardware. An AO system has been shown to be able to characterize its own response without additional instrumentation. Experimentally determined models are given for a TTM and a DM.  相似文献   

8.
We present a wind-predictive controller for astronomical adaptive optics (AO) systems that is able to predict the motion of a single windblown layer in the presence of other, more slowly varying phase aberrations. This controller relies on fast, gradient-based optical flow estimation to identify the velocity of the translating layer and a recursive mean estimator to account for turbulence that varies on a time scale much slower than the operating speed of the AO loop. We derive the Cramer-Rao lower bound for the wind estimation problem and show that the proposed estimator is very close to achieving theoretical minimum-variance performance. We also present simulations using on-sky data that show significant Strehl increases from using this controller in realistic atmospheric conditions.  相似文献   

9.
Powell K 《Applied optics》2011,50(15):2185-2191
This paper presents analytical tools developed for estimating the effects of structural vibration on closed-loop adaptive optics system image quality. The general equation for the normalized intensity distribution of an image subject to structural vibration is derived. The resulting two-dimensional theoretical point spread function is computed numerically and compared with empirical data obtained on sky at the Multiple Mirror Telescope Observatory. A simplified analytical expression for the normalized intensity distribution is derived for long exposures and used to quantify the effects on Strehl and spot full width at half-maximum as a function of vibration amplitude, telescope diameter, and observation wavelength.  相似文献   

10.
We demonstrate the existence of higher-order curvature adaptive optics (AO) systems and compare their performance with the current 85-element system being built at the Institute for Astronomy at the University of Hawaii. Simulation results show that systems with in excess of 500 actuators are possible with actuator patterns that are simple extensions of the 85-element design. The attenuation of residual phase error within the Nyquist frequency of the deformable mirror (DM) satisfies the (-5/6) power law. A high-order system is also analyzed in which the pattern of wavefront sensor is synthesized from square pixels and the curvature actuators of the DM are also rectangular. The Strehl performance is approximately 2% worse than its annular analog.  相似文献   

11.
We present the results of independent numerical simulations of adaptive optics systems for 8-m astronomical telescopes that use both Shack-Hartmann and wave-front curvature sensors. Four differents codes provided consistency checks and redundancy. All four simulate a complete system and model noise and servo-lag effects. A common atmospheric turbulence generator was used for consistency. We present the main characteristics of the codes, and we report the system performance in term of Strehl ratio and full width at half-maximum versus the magnitude of the (on-axis) guide star. We show that a Shack-Hartmann plus stacked actuator mirror system with 10 x 10 subapertures or a curvature plus bimorph mirror system with 56 subapertures yields a 50% Strehl ratio at 1.6 mum for a m(R) = 14.7 magnitude star, with almost equivalent performance at both brighter and dimmer light levels.  相似文献   

12.
Spatial-frequency domain techniques have traditionally been applied to obtain estimates for the independent effects of a variety of individual error sources in adaptive optics (AO). Overall system performance is sometimes estimated by introducing the approximation that these individual error terms are statistically independent, so that their magnitudes may be summed in quadrature. More accurate evaluation methods that account for the correlations between the individual error sources have required Monte Carlo simulations or large matrix calculations that can take much longer to compute, particularly as the order of the AO system increases beyond a few hundred degrees of freedom. We describe an approach to evaluating AO system performance in the spatial-frequency domain that is relatively computationally efficient but still accounts for many of the interactions between the fundamental error sources in AO. We exploit the fact that (in the limits of an infinite aperture and geometrical optics) all the basic wave-front propagation, sensing, and correction processes that describe the behavior of an AO system are spatial-filtering operations in the Fourier domain. Essentially all classical wave-front control algorithms and evaluation formulas are expressed in terms of these filters and may therefore be evaluated one spatial-frequency component at a time. Performance estimates for very-high-order AO systems may be obtained in 1 to 2 orders of magnitude less time than needed when detailed simulations or analytical models in the spatial domain are used, with a relative discrepancy of 5% to 10% for typical sample problems.  相似文献   

13.
A sky coverage model for laser guide star adaptive optics systems is proposed. The atmosphere is considered to consist of a finite number of phase screens, which are defined by Zernike basis polynomials, located at different altitudes. These phase screens are transformed to the aperture plane, where they are converted to laser and natural guide star wavefront sensing measurements. These transformations incorporate the cone effect due to guide stars at finite heights, anisoplanatism due to guide stars off axis with respect to the science object, and adaptive optics systems with multiple guide stars. The wavefront error is calculated tomographically with minimum variance estimators derived from the transformation matrices and the known statistical properties of the atmosphere. This sky coverage model provides fast Monte Carlo simulations over random natural guide star configurations, irrespective of telescope diameter. The Monte Carlo simulations outlined show that inclusion of a finite outer scale for the atmosphere significantly reduces the median wavefront error, that increasing the number of laser guide stars in the asterism reduces the median wavefront error, and that a larger natural guide star patrol field provides a smaller median wavefront error when there is a low star density in the field.  相似文献   

14.
We report on the development of wavefront reconstruction and control algorithms for multiconjugate adaptive optics (MCAO) and the results of testing them in the laboratory under conditions that simulate an 8 meter class telescope. The University of California Observatories (UCO) Lick Observatory Laboratory for Adaptive Optics multiconjugate testbed allows us to test wide-field-of-view adaptive optics systems as they might be instantiated in the near future on giant telescopes. In particular, we have been investigating the performance of MCAO using five laser beacons for wavefront sensing and a minimum-variance algorithm for control of two conjugate deformable mirrors. We have demonstrated improved Strehl ratio and enlarged field-of-view performance when compared to conventional AO techniques. We have demonstrated improved MCAO performance with the implementation of a routine that minimizes the generalized isoplanatism when turbulent layers do not correspond to deformable mirror conjugate altitudes. Finally, we have demonstrated suitability of the system for closed loop operation when configured to feed back conditional mean estimates of wavefront residuals rather than the directly measured residuals. This technique has recently been referred to as the "pseudo-open-loop" control law in the literature.  相似文献   

15.
Multi-object adaptive optics (MOAO) is a solution developed to perform a correction by adaptive optics (AO) in a science large field of view. As in many wide-field AO schemes, a tomographic reconstruction of the turbulence volume is required in order to compute the MOAO corrections to be applied in the dedicated directions of the observed very faint targets. The specificity of MOAO is the open-loop control of the deformable mirrors by a number of wavefront sensors (WFSs) that are coupled to bright guide stars in different directions. MOAO calls for new procedures both for the cross registration of all the channels and for the computation of the tomographic reconstructor. We propose a new approach, called "Learn and Apply (L&A)", that allows us to retrieve the tomographic reconstructor using the on-sky wavefront measurements from an MOAO instrument. This method is also used to calibrate the registrations between the off-axis wavefront sensors and the deformable mirrors placed in the science optical paths. We propose a procedure linking the WFSs in the different directions and measuring directly on-sky the required covariance matrices needed for the reconstructor. We present the theoretical expressions of the turbulence spatial covariance of wavefront slopes allowing one to derive any turbulent covariance matrix between two wavefront sensors. Finally, we discuss the convergence issue on the measured covariance matrices, we propose the fitting of the data based on the theoretical slope covariance using a reduced number of turbulence parameters, and we present the computation of a fully modeled reconstructor.  相似文献   

16.
A Kellerer 《Applied optics》2012,51(23):5743-5751
First multiconjugate adaptive-optical (MCAO) systems are currently being installed on solar telescopes. The aim of these systems is to increase the corrected field of view with respect to conventional adaptive optics. However, this first generation is based on a star-oriented approach, and it is then difficult to increase the size of the field of view beyond 60-80?arc sec in diameter. We propose to implement the layer-oriented approach in solar MCAO systems by use of wide-field Shack-Hartmann wavefront sensors conjugated to the strongest turbulent layers. The wavefront distortions are averaged over a wide field: the signal from distant turbulence is attenuated and the tomographic reconstruction is thus done optically. The system consists of independent correction loops, which only need to account for local turbulence: the subapertures can be enlarged and the correction frequency reduced. Most importantly, a star-oriented MCAO system becomes more complex with increasing field size, while the layer-oriented approach benefits from larger fields and will therefore be an attractive solution for the future generation of solar MCAO systems.  相似文献   

17.
Future extreme adaptive optics (ExAO) systems have been suggested with up to 10(5) sensors and actuators. We analyze the computational speed of iterative reconstruction algorithms for such large systems. We compare a total of 15 different scalable methods, including multigrid, preconditioned conjugate-gradient, and several new variants of these. Simulations on a 128x128 square sensor/actuator geometry using Taylor frozen-flow dynamics are carried out using both open-loop and closed-loop measurements, and algorithms are compared on a basis of the mean squared error and floating-point multiplications required. We also investigate the use of warm starting, where the most recent estimate is used to initialize the iterative scheme. In open-loop estimation or pseudo-open-loop control, warm starting provides a significant computational speedup; almost every algorithm tested converges in one iteration. In a standard closed-loop implementation, using a single iteration per time step, most algorithms give the minimum error even in cold start, and every algorithm gives the minimum error if warm started. The best algorithm is therefore the one with the smallest computational cost per iteration, not necessarily the one with the best quasi-static performance.  相似文献   

18.
19.
Jackel S  Moshe I  Lavi R 《Applied optics》2003,42(6):983-989
Correction of birefringence-induced effects (depolarization and bipolar focusing) were achieved in double-pass amplifiers by use of a Faraday rotator between the laser rod and the retroreflecting optic. A necessary condition was ray retrace. Retrace was limited by imperfect conjugate-beam fidelity and by nonreciprocal refractive indices. We compared various retroreflectors: stimulated-Brillouin-scatter phase-conjugate mirrors (PCMs), PCMs with rod-to-PCM relay imaging (IPCM), IPCMs with astigmatism-correcting adaptive optics, and all-adaptive-optic imaging variable-radius mirrors. Results with flash-lamp-pumped, Nd:Cr:GSGG double-pass amplifiers showed the superiority of adaptive optics over nonlinear optic retroreflectors in terms of maximum average power, improved beam quality, and broader oscillator pulse duration/bandwidth operating range. Hybrid PCM-adaptive optics retroreflectors yielded intermediate power/beam-quality results.  相似文献   

20.
Ren H  Dekany R  Britton M 《Applied optics》2005,44(13):2626-2637
We propose a new recursive filtering algorithm for wave-front reconstruction in a large-scale adaptive optics system. An embedding step is used in this recursive filtering algorithm to permit fast methods to be used for wave-front reconstruction on an annular aperture. This embedding step can be used alone with a direct residual error updating procedure or used with the preconditioned conjugate-gradient method as a preconditioning step. We derive the Hudgin and Fried filters for spectral-domain filtering, using the eigenvalue decomposition method. Using Monte Carlo simulations, we compare the performance of discrete Fourier transform domain filtering, discrete cosine transform domain filtering, multigrid, and alternative-direction-implicit methods in the embedding step of the recursive filtering algorithm. We also simulate the performance of this recursive filtering in a closed-loop adaptive optics system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号