首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, we have investigated a boundary layer analysis for uniform lateral mass flux effect on natural convection of non-Newtonian power-law fluids along an isothermal or isoflux vertical cone embedded in a porous medium. Numerical results for the dimensionless temperature profiles as well as the local Nusselt number are presented for the mass flux parameter, viscosity index n and geometry shape parameter λ. The local surface heat transfer increases for the case withdrawal of fluid, the increase of the value of λ. The local Nusselt number is found to be significantly affected by the surface mass flux than the viscosity index.  相似文献   

2.
The present work investigates numerically the laminar natural convection heat and mass transfer in open vertical rectangular ducts with uniform wall temperature/uniform wall concentration (UWT/UWC) or uniform heat flux/uniform mass flux (UHF/UMF) boundary conditions. The vorticity–velocity formulation is applied to solve for the coupled momentum, energy and concentration equations. Results of dimensionless induced volume rate Q, average Nusselt number Nu and Sherwood number Sh are presented in terms of channel length L, buoyancy ratio N, Grashof number Gr, Schmidt number Sc and aspect ratio γ. Analytical solutions for Q, Nu and Sh for the UWT/UWC case are derived under fully developed condition. In addition, the correlation equations of Q, Nu and Sh for both boundary conditions are also presented.  相似文献   

3.
This study aims to investigate the effects of the unhealed entry or unheated exit section on the free convection heat transfer in airflow in vertical parallel plate channels resulting from the thermal boundary conditions of uniform heat flux (VHF) and uniform wall temperature (UWT). Results of average Nusselt number and dimensionless volume flow rate are presented in terms of the ratio of the length of heated section to the full channel length and a Rayleigh number, ranging from the limit for the fully developed flow to that for single-plate behavior. Analytical equations for dimensionless volume flow rate and average Nusselt number for both unheated restrictions and both thermal boundary conditions have been developed for the fully developed flow limit. The numerical solutions are shown to approach asymptotically the approximate solution for fully developed flow as the Rayleigh number approaches 1 or less. An important finding of the study is that an unheated exit characterizes greater total heat transfer and volume flow rate than an unheated entry does. The presence of the unheated entry or unheated exit severely affects the convection process, especially at low Rayleigh number. A notable effect of an unheated exit on convection characteristics was found for the case of UHF at high Rayleigh number.  相似文献   

4.
An analysis is performed to study the flow and heat transfer characteristics of laminar free convection in boundary layer flows from horizontal, inclined, and vertical flat plates in which the wall temperature Tw(x) or the surface heat flux qw(x) varies as the power of the axial coordinate in the form Tw(x) = T + axnorqw = bxm. The governing equations are first cast into a dimensionless form by a nonsimilar transformation and the resulting equations are then solved by a finite-difference scheme. Numerical results for fluids with Prandtl numbers of 0.7 and 7 are presented for three representative exponent values under each of the nonuniform surface heating conditions. It has been found that both the local wall shear stress and the local surface heat transfer rate increase as the angle of inclination from the horizontal γ increases or as the local Grashof number increases. An increase in the value of the exponent n or m enhances the surface heat transfer rate, but it causes a decrease in the wall shear stress. Correlation equations for the local and average Nusselt numbers are obtained for the special cases of uniform wall temperature (UWT) and uniform surface heat flux (UHF). Comparisons are also made of the local Nusselt numbers between the present results and available experimental data for the UHF case, and a good agreement is found to exist between the two.  相似文献   

5.
An MHD laminar flow through a two dimensional channel subjected to a uniform magnetic field and heated at the walls of the conduit over the whole length with a sinusoidal heat flux of vanishing mean value or not, is studied analytically. General expressions of the temperature distribution and of the local and mean Nusselt numbers are obtained by using the technique of linear operators in the case of negligible Joule and viscous dissipation and by taking into account the axial conduction effect. The principal results show that an increase of the local Nusselt number with Hartmann number is observed, and, far from the inlet section, the average heat transfer between the fluid and the walls shows a significant improvement at all values of Hartmann number used when the frequency of the prescribed sinusoidal wall heat flux is increasing in the case of vanishing mean value of the heat flux and this is true especially at low Peclet numbers.  相似文献   

6.
The effect of transpiration velocity on the heat and mass transfer characteristics of mixed convection flow along a permeable vertical flat plate under the combined effects of thermal and mass diffusion is analysed. The diffusion-thermo and thermo-diffusion effects as well as the interfacial velocities due to mass diffusion are negligibly small. The plate is maintained at a uniform temperature and species concentration. Numerical results for the local skin-friction, the local Nusselt number and the local Sherwood number, as well as for the velocity, the temperature and the concentration profiles, are presented for diffusion of common species into air only. In general, it has been found for thermally assisted flow that the local surface shear-, heat-, and mass-transfer rates decrease owing to suction of fluid. This trend reversed for blowing of fluid. In addition this trend is higher for species of larger Schmidt number as well as for increasing buoyancy force.  相似文献   

7.
The paper presents a theoretical analysis of flow and heat transfer characteristics of the effects of buoyancy force on laminar boundary layer over a rotating sphere in forced flow under two kinds of heating conditions: uniform wall temperature and uniform surface heat flux. By applying appropriate coordinate transformations and using Merk's types of series, the governing momentum and energy equations are reduced to a set of coupled ordinary differential equations, which depend on wedge, rotation and buoyancy parameters. Numerical computations are carried out for Prandtl numbers 0.7,1.0 and for various values of buoyancy and rotation parameters. For aiding flow, it is found that both the friction factor and the local Nusselt number increase with increasing buoyancy force. The local free stream velocity increases with buoyancy which, in turn, affects the friction coefficient and Nusselt number. The coupling between rotation and buoyancy results in increased overshooting of the velocity profiles in the vicinity of the rotating sphere. For an equivalent buoyancy effect, heating by uniform surface heat flux yields larger local Nusselt number than heating by uniform wall temperature. The ratio NuUHF/NuUWT is higher for the rotating sphere (as compared to a nonrotating case) and further the ratio increases as the sphere spins faster. The effect of free stream, rotation and buoyancy on the eruption of flow is examined and also a suggestion for further investigation is made.  相似文献   

8.
The problem of conjugate natural convection about a vertical cylindrical fin with uniform lateral mass flux in a fluid-saturated porous medium has been studied numerically. Solutions based on the third level of truncation are obtained by the local nonsimilarity method. The effects of the surface mass flux, the conjugate convection-conduction parameter, and the surface curvature on fin temperature distribution, local heat transfer coefficient, local heat flux, average heat transfer coefficient, and total heat transfer rate are presented. A comparison with finite-difference solutions for the case of constant wall temperature was made, and found in a good agreement.  相似文献   

9.
The present study concentrates on the effects of viscous dissipation and the yield shear stress on the asymptotic behaviour of the laminar forced convection in a circular duct for a Bingham fluid. It is supposed that the physical properties are constant and the axial conduction is negligible. The asymptotic temperature profile and the asymptotic Nusselt number are determined for various axial distributions of wall heat flux which yield a thermally developed region. It is shown that if the asymptotic value of wall heat flux distribution is vanishes, the asymptotic value of the Nusselt number is zero. The case of the asymptotic wall heat flux distribution non-vanishing giving a value of the Nusselt number dependent on the Brinkman number and on the dimensionless radius of the plug flow region was also analysed. For an infinite asymptotic value of wall heat flux distributions, the asymptotic value of the Nusselt number depends on the dimensionless radius of the plug flow region and on the dimensionless parameter which depends on the asymptotic behaviour of the wall heat flux. The condition of uniform wall temperature and convection with an external isothermal fluid were also considered. The comparison with other existing solutions in the literature in the Newtonian case is analysed.  相似文献   

10.
The effect of local thermal nonequilibrium (LTNE) on the entropy generation and heat transfer characteristics in the magnetohydrodynamic flow of a couple-stress fluid through a high-porosity vertical channel is studied numerically using the higher-order Galerkin technique. The Boussinesq approximation is assumed to be valid and the porous medium is considered to be isotropic and homogeneous. Two energy equations are considered one each for solid and fluid phases. The term involving the heat transfer coefficient in both equations renders them mutually coupled. Thermal radiation and an internal heat source are considered only in the fluid phase. The influence of inverse Darcy number, Hartmann number, couple-stress fluid parameter, Grashof number, thermal radiation parameter, and interphase heat transfer coefficient on velocity and temperature profiles is depicted graphically and discussed. The entropy generation, friction factor, and Nusselt number are determined, and outcomes are presented via plots. The effect of LTNE on the temperature profile is found to cease when the value of the interphase heat transfer coefficient is high, and in this case, we get the temperature profiles of fluid and solid phases are uniform. The physical significance of LTNE is discussed in detail for different parameters' values. It is found that heat transport and friction drag are maximum in the case of LTNE and minimum in the case of local thermal equilibrium. We observe that LTNE opposes the irreversibility of the system. The corresponding results of a fluid-saturated densely packed porous medium can be obtained as a limiting case of the current study.  相似文献   

11.
Numerical simulations have been carried out to investigate the effects of the fluid electric conductivity and non-uniform heat source (or sink) on two-dimensional steady hydromagnetic convective flow of a micropolar fluid (in comparison with the Newtonian fluid) flowing along an inclined flat plate with a uniform surface heat flux. The local similarity solutions are presented for the non-dimensional velocity distribution, microrotation, and temperature profiles in the boundary layer. The significance of the physical parameters on the flow field is discussed in detail. The results show that the values of the skin-friction coefficient and the Nusselt number are higher for the case of constant fluid electric conductivity compared with those for the variable fluid electric conductivity. The effect of temperature dependent heat generation is much stronger than the effect of surface dependent heat generation. The results also show that effects of the fluid electric conductivity and non-uniform heat generation in a micropolar fluid are less pronounced than that in a Newtonian fluid.  相似文献   

12.
Forced convection of Williamson fluid flow in porous media under constant surface heat flux conditions is investigated numerically. A model of Darcy–Forchheimer–Brinkman is used and the corresponding governing equations are expressed in dimensionless forms and solved numerically using bvp4c with MATLAB package. Boundary layer velocity, shear stress, and temperature profiles, in addition to the local Nusselt number parameter over a horizontal plate, are found. The effects of the Forchheimer parameter, Nusselt number, Darcy parameter, porous inertia, and Williamson parameter on the velocity profiles, temperature profiles, coefficient of friction, and coefficient of heat transfer are investigated. The results showed that as the Darcy parameter increases, boundary layer velocity and shear stress increase, while the temperature and Nusselt number decrease. In addition, as Williamson's parameter increases, velocity within the boundary layer, shear stress, and Nusselt number decrease while the temperature profile increases. Also, with larger values of the Forchheimer parameter, the velocity of the boundary layer, shear stress, temperature, and Nusselt number increase. Furthermore, the Nusselt number and the coefficient of friction are obtained on the surface of the horizontal plate.  相似文献   

13.
A boundary layer analysis is used to investigate both heat and mass transfer characteristics of mixed convection about a wedge in saturated porous media under the coupled effects of thermal and mass diffusion. The surface of the wedge is maintained at a variable wall temperature (VWT) and variable wall concentration (VWC). The nonsimilar governing equations are obtained by using a suitable transformation and solved by Keller box method. Numerical results are presented for the local Nusselt number and the local Sherwood number. Increasing the buoyancy ratio N, the exponent of wall temperature/concentration n and the wedge angle parameter λ increases the local Nusselt number and the local Sherwood number. As mixed convection parameter χ varies from 0 to 1, the local Nusselt number and the local Sherwood number decrease initially, reach a minimum in the intermediate value of χ and then increase gradually. It is apparent that the Lewis number has a pronounced effect on the local Sherwood number than it does on the local Nusselt number. Furthermore, increasing the Lewis number decreases (increases) the local heat (mass) transfer rate.  相似文献   

14.
This paper presents an analytic investigation of forced convection in parallel-plate channel partly occupied by a bidisperse porous medium and partly by a fluid clear of solid material, the distribution being asymmetrical. The walls of the channel are subject to an uniform heat flux; the flow is assumed to be hydrodynamically and thermally fully developed. The layer of a bidisperse porous medium is attached to one of the channel walls; it is modeled utilizing a two-velocity two-temperature formulation using Darcy’s law. The Beavers–Joseph boundary condition is employed at the bidisperse porous medium/clear fluid interface. The dependences of the Nusselt number on a conductivity ratio, a velocity ratio, a volume fraction, internal heat exchange parameter, and the position of the porous-fluid interface are investigated. Both cases of symmetric and asymmetric heating are investigated, which is specified by the asymmetry heating parameter introduced here. For the case of asymmetric heating, a singular behavior of the Nusselt number is found and explained.  相似文献   

15.
Numerical analysis has been done to investigate magnetohydrodynamics nonlinear convective flow of couple stress micropolar nanofluid with Catteneo‐Christov heat flux model past stretching surface with the effects of heat generation/absorption term, chemical reaction rate, first‐order slip, and convective boundary conditions. The coupled highly nonlinear differential equation governing the steady incompressible laminar flow has been solved by a powerful numerical technique called finite element method. The impacts of diverse parameters on linear velocity, angular velocity (microrotation), temperature, concentration profile, local skin friction coefficient, local wall couple stress, local Nusselt number, and Sherwood number are presented in graphical and tabular form. The result pointed out that the enhancement in material parameter β increases the velocity of the fluid while the couple stress parameter K has quite opposite effect. Heat and mass transfer rate of the fluid are enhanced by increasing material parameter while couple stress parameter shows the opposite influence. Moreover, heat and mass transfer rate are higher with the Catteneo‐Christov heat flux model than Fourier's law of heat conduction. The accuracy of the present method has been confirmed by comparing with previously published works.  相似文献   

16.
Effect of mass transfer on the transient free convection flow of a dissipative fluid along a semi-infinite vertical plate in presence of constant heat flux, is studied by solving coupled non-linear system of partial differential equations, using Crank-Nicolson technique which is stable and convergent. Transient temperature, concentration and velocity profiles, local and average skin-friction, Nusselt number and Sherwood number are shown graphically for air. The effects of ε, viscous dissipative parameter, Schmidt number, buoyancy ratio parameter on the transient state are discussed.  相似文献   

17.
This paper investigates the magnetohydrodynamic (MHD) flow and heat transfer characteristics in the presence of a uniform applied magnetic field. The boundary layer flow of a third-order fluid is induced due to linear stretching of a non-conducting sheet. The heat transfer analysis has been carried out for two heating processes, namely (i) with prescribed surface temperature (PST-case) and (ii) prescribed surface heat flux (PHF-case). The governing non-linear differential equations are solved analytically using homotopy analysis method (HAM). The series solutions are developed and the convergence of these solutions is discussed. Velocity and temperature distributions are shown graphically. The numerical values for the skin friction coefficient and the Nusselt number are entered in tabular form. Emphasis has been given to the variations of the emerging parameters such as third-order parameter, magnetic parameter, Prandtl number and the Eckert number. It is noted that the skin friction coefficient decreases as the magnetic parameter or the third grade parameter increases.  相似文献   

18.
The fully developed mixed convection flow in a vertical circular duct is investigated analytically, under the assumption of laminar parallel flow. A wall heat flux uniform in the axial direction and dependent on the angular coordinate is considered. As a consequence, the fluid temperature is three dimensional, since it changes in the radial, axial and angular directions. An analytical method based on Fourier series expansions of temperature and velocity fields is adopted to determine the velocity and the temperature distributions as well as the friction factor and the average Nusselt number. The general solution, expressed in terms of Bessel functions, is applied to study a case that has a special importance in technical applications: a duct whose wall is half subject to a uniform heat flux and half adiabatic. The positive and negative threshold values of the ratio between the Grashof number Gr and the Reynolds number Re for the onset of the flow reversal phenomenon are determined. A comparison between the average Nusselt number for the considered non-axisymmetric case and that for the case of a duct subject to a uniform wall heat flux is performed.  相似文献   

19.
This work studies the heat and mass transfer characteristics of natural convection near a vertical wavy cone in a fluid saturated porous medium with Soret and Dufour effects. The surface of the wavy cone is kept at constant temperature and concentration. The governing equations are transformed into a set of coupled differential equations, and the obtained boundary layer equations are solved by the cubic spline collocation method. The heat and mass transfer characteristics are presented as functions of Soret parameter, Dufour parameter, half angle of the cone, Lewis number, buoyancy ratio, and dimensionless amplitude. Results show that an increase in the Dufour parameter tends to decrease the local Nusselt number, and an increase in the Soret parameter tends to decrease the local Sherwood number. Moreover, a greater half angle of the cone leads to a greater fluctuation of the local Nusselt and Sherwood numbers with the streamwise coordinates.  相似文献   

20.
Abstract

Forced-convection heat transfer information as a function of the pertinent nondimensional numbers is obtained numerically for laminar incompressible non-Newtonian fluid flow in the entrance region of a square duct with simultaneously developing temperature and velocity profiles for constant axial wall heat flux with uniform peripheral wall temperature. The power-law model characterizes the non-Newtonian behavior.

Finite-difference representations are developed for the equations of the mathematical model, and numerical solutions are obtained assuming uniform inlet velocity and temperature distributions. Results are presented for local and mean Nusselt numbers as functions of the Graetz number and the Prandtl number in the entrance region. Comparisons are made with previous analytical work for Newtonian fluids. The results show a strong effect of the Prandtl number on the Nusselt numbers with fully developed and uniform velocity profiles representing the lower and upper limits, respectively. The results provide a new insight into the true three-dimensional character of the pseudoplastlc fluid flow in the entrance region of a square duct and are accurate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号