首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
80Kr核谱中4个8+态的微观研究   总被引:2,自引:1,他引:1  
应用微观sdIBM-2 2q.p.案,计算了^80Kr核的基态带、γ带和部分高自旋态能诸,计算值与最新实验结果符合得较好。方案指认81^ 、82^ 和83^ 态很可能分属基态带、两中子和两质子准粒子态,而84^ 态则属于γ带,并都获得最新实验结果支持。计算表明:核的一个玻色于突然拆对不会明显改变前后状态。讨论了两准粒子顺排态能量及其指认问题。  相似文献   

2.
A~80区中重核核结构复杂,且随质子数、中子数和角动量变化,该区核的核结构研究是当前原子核高自旋态谱学研究领域的中心课题之一。核微观组态、单粒子和集体运动等核结构可以通过能级和寿命测量来研究,但要作出肯定的结论和深入的了解需要测量原子核的g-因子。A~80区核结构的一个重要特征是g9/2质子与(或)中子折对顺排。g-因子对质子与(或)中子折对顺排特别灵敏,由g-因子测量可对粒子折对顺排作出肯定的判断。本工作通过A~80区Z=40的Zr同位素的高自旋态g-因子测量研究核结构随中子数和角动量变化。 采用瞬态场离子注入扰动角分布方法测量了84Zr和86Zr的高自旋转动的态g-因子。高自旋态由85Ni(28Si,2p)84Zr和58Ni(32S,4p)86Zr反应产生和布居。入射Si和S束的能量分别为  相似文献   

3.
在核结构研究中,磁矩有很重要的作用,它能够给出直接和确定的核结构信息。高自旋态的核结构研究中,核子是从集体运动还是从核子顺排获得角动量是个前沿的问题。按照能量,变形核可以从高/轨道的准粒子顺排获得自旋角动量。质子和中子顺排对磁矩的大小和符号的影响不同,质子顺排导致磁矩增大,而中子顺排使磁矩减小甚至出现负值。转动带g因子系统测量,能够澄清核子是从集体运动还是从准粒子顺排获得角动量。为此,我们系统测量了^83Y正宇称转动带的g因子。  相似文献   

4.
g玻色子对100Pd核高自旋态能谱的影响   总被引:1,自引:0,他引:1  
以新近的实验单粒子能量为输入,应用唯象sdgIBM理论的两种微观实现——微观sdgIBM-2方案和sdgIBM-Fmax方案,仔细研究100Pd的核能谱和B(E2)跃迁。计算结果表明:sdgIBM-2方案成功地再现了100Pd核的较复杂的基态带和γ带的高角动量态能谱以及已知的B(E2)跃迁,其再现角动量达Jπ=16+、Ex≈700MeV,比通常IBM理论再现的Jπ=6+~8+、Ex≈200MeV高出很多;指认直到16+的yrast态都是基态,很可能目前观测到的yrast带中根本就不存在玻色子破对后的准粒子态。理论分析和数值计算进一步表明,为了能在IBM理论框架下描述好核的高角动量基态,需要平权地引入g玻色子,以便提供较强的十六极对相互作用,抵抗住高速转动下玻色子的破对趋势。用g玻色子数为0~3的弱耦合sdgIBM-Fmax方案的计算结果对此作了进一步说明。按照微观sdgIBM 2方案,解释了实验上3个14+态的异常:14+1态是由于1个中子g玻色子在转变为中子d玻色子的量子相变中辐射出1对光子的结果,14+2是16+1态退耦的中间态,而14+3是真正的基态。  相似文献   

5.
108Cd核振动到转动演化的微观研究   总被引:3,自引:2,他引:1  
基于微观sdIBM-Fmax模型和实验单粒子能量值,在最普遍的哈密顿量下,用两组不同的核子-核子等效相互作用参数,分别很好地再现了108Cd核的振动带能谱和转动带能谱及其演化过程。微观和唯象的研究指出:1)这两种激发模式的共存区是能态8+1~14+1(Ex=3.683~5.503MeV),8+1态是振动模式占据优势的能态,14+1态是转动模式占据优势的能态,而10+1态则是两种模式的中立能态;2)从基态到24+1态的yrast态均是集体态,而以后出现的第1个拆对顺排态很可能就是中子h11/2的两准粒子态;3)核结构的这种过渡不是很剧烈,而是在过渡区中,通过对玻色子结构中价核子对的耦合概率的微小改变来实现的。  相似文献   

6.
在核结构研究中,磁矩有很重要的作用,它能够给出直接和确定的核结构信息。高自旋态的核结构研究中,核子是从集体运动还是从核子顺排获得角动量是个前沿的问题。按照能量,变形核可以从高j轨道的准粒子顺排获得自旋角动量。质子和中子顺排对磁矩的大小和符号的影响不同,质子顺排导致磁矩增大,而中子顺排使磁矩减小甚至出现负值。转动带g因子系统测量,能够澄清核子是从集体运动还是从准粒子顺排获得角动量。为此,我们系统测量了83Y正宇称转动带的g因子。实验测量是在中国原子能科学研究院的HI-13串列加速器进行的。用98MeV的Si束流轰击58N,…  相似文献   

7.
磁转动研究是近几年核结构物理研究中一个引人关注的热点研究课题。磁转动是不同于传统形变核转动的一种新的原子核转动形式。在接近球形的核中观察到,在磁转动带带头,中子和质子的角动量矢量互相垂直,产生很大的磁矩。随着激发能或自旋的增加,中子和质子角动量顺排像剪刀闭合那样逐步靠近。g因子是核子角动量顺排和耦合最直接和最灵敏的探针。本工作测定A=80区^85Zr高自旋磁转动带态的g因子,检验质子和中子顺排和耦合及其随自旋或激发能的变化,了解磁转动的物理机制和规律,对磁转动提供直接的实验依据,验证理论模型。  相似文献   

8.
在核结构研究中,磁矩能够直接给出核结构信息。高自旋态核结构研究中的核子顺排是一前沿研究课题。质子和中子顺排对磁矩的大小和符号的影响不同,质子顺排导致磁矩增大,而中子顺排则使磁矩减小,甚至出现负值。转动g因子系统测量,能够澄清核子是从集体运动还是从准粒子顺排获得角动量。  相似文献   

9.
稀土区的核往往表现出多样的核形状和核结构。^152Dy(N=86,Z=66)核在低自旋态时有3个带共存于扁椭形的单粒子态中。对于同中子数的^153Ho(N=86,Z=67)和^154Er(N=86,Z=68)也发现了与在^152Dy中相同的3种结构:单粒子结构、SD结构和形变的转动结构。即N≤90的Dy、Ho和Er同位素核,表现出集体性与单粒子性共存的特点。为了研究质子对形状共存的影响,对同中子数核^155Tm(N=86,Z=69)的自旋态结构进行了实验研究。  相似文献   

10.
一般认为,稀土区原子核中一对i_(13/2)中子拆对顺排是导致转动带交叉的主要原因。根据这一理论,稀土区奇质子奇A核建立在不同质子组态上的转动带交叉频率应该是组态无关的并应与相邻偶偶核的转动带交叉频率一致。然而,实验结果显示,当稀土区奇质子处于不同的组态时,由一对i_(13/2)中子拆对顺排导致的带交叉频率表现出组态相关性,特别是当这一核区某些奇质子核的转动带建立在质子h9/2 1/2[541]Nilsson轨道上时,其转动带交叉频率出现了显著的推迟。这一现象在  相似文献   

11.
用重离子熔合蒸发反应布居A~110核区缺中子奇奇核106,108Ag的高自旋态,分别在这两个核中找到了类似104Rh中基于πg9/2 νh11/2组态的手征双带结构。它们的能级能量、旋称及B(M1)/B(E2)随角动量的变化关系符合手征带的特征。然而,进一步分析发现,106Ag、108Ag双带之间的转动惯量及准粒子角动量顺排存在较大差别,说明两者的晕带和伴带所基于的核芯形变与角动量耦合模式并不一致。  相似文献   

12.
相互作用玻色子模型(Interacting boson model,IBM)是一个代数模型,它能很好地描述原子核的集体运动性质。由于IBM中玻色子数守恒及有可解析解,因而能方便地研究原子核过渡区的行为。本文在IBM模型中引入了一种新的方案,即用O(6)高阶项替代传统方案的SU(3)四极-四极相互作用来描述轴对称转动核。在此基础上,对过渡区具有X(5)对称性的原子核的量子相变现象进行了系统的研究。分别在两种方案下,研究了原子核154Gd和98Sr低激发态的能谱和电磁跃迁性质。结果表明,采用新的O(6)高阶项相互作用可以更好地描述实验结果,特别是描述不同带之间的带间跃迁性质。  相似文献   

13.
稀土区的核往往表现出多样的核形状和核结构。152Dy(N=86,Z=66)核在低自旋态时有3个带共存于扁椭形的单粒子态中[1]。对于同中子数的153Ho(N=86,Z=67)和154Er(N=86,Z=68)也发现了与在152Dy中相同的3种结构:单粒子结构、SD结构和形变的转动结构[2]。即N≤90的Dy、Ho和Er同位素核  相似文献   

14.
用响应函数理论在相对论平均场基态上建立了准粒子相对论无规位相近似(QRRPA)的理论框架。对关联采用BCS近似,由相邻核的实验结合能得到到能隙Δ。由于相对论组态空间的完备性,在QRRPA计算中除了包括正能粒子-空穴组态外,还必须考虑Fermi海空穴态和Dirac海负能态形成的粒子-空穴组态。用QRRPA研究了^120Sn的同位旋标量巨多极共振,如巨单极,四极和八极共振。准粒子无规位相近似能够很好地描述实验上观察到^120Sn的低能集体激发态的能量。  相似文献   

15.
郭亮  牛一斐 《核技术》2023,(8):179-185
本文利用相对论准粒子无规相位近似(Quasiparticle Random Phase Approximation,QRPA)模型研究了高斯型同位旋标量对力对原子核42Ca中β-方向的伽莫夫-泰勒(Gamow-Teller,GT)和自旋-偶极(Spin-dipole,SD)跃迁的影响。结果表明:同位旋标量对力对于恢复SU(4)对称性从而重现实验上42Ca的低能量超级GT态至关重要。同位旋标量对力会使自旋反转的跃迁组分混合进入低能量GT态,从而增强低能量GT态的集体性,极大地增加其跃迁强度。同时,由于同位旋标量对力具有吸引性质,会减小低能量GT态的激发能。对于SD跃迁,同位旋标量对力对其激发能和跃迁强度的影响均不明显。  相似文献   

16.
质量数80区的过渡性核表现了集体性和单粒子性的能级结构。对质子数Z为37~40、中子数N=45的原子核,如81Kr,87Mo核,在中低自旋时显示了单粒子特性,而在高自旋态时表现出较多的集体性。 近些年来,在过渡区在束γ谱学,如83Rb、83Y等核研究中,观察到了一串建立在较高K态的增强的△I=1的M1跃迁。它被认为是一种新的激发模式,叫做磁转动带。我们对85Zr的研究目的,一是将其能级推到更高自旋,另一个是寻找该核的磁转动带。  相似文献   

17.
用屏栅电离室测量了^10B(n,α)7Li反应出射α粒子的角分布和总截面。实验结果表明:入射中子能量为4-6.5MeV时,出射的α粒子角分布明显后倾,且后倾趋势随入射中子能量的增加而变大。  相似文献   

18.
《核技术》2017,(2)
分子动力学(Molecular dynamics,MD)是研究材料原子尺度结构及其变化的重要模拟方法,可用于模拟材料的粒子辐照损伤。由于该方法不包含核数据,通常对初始化条件进行简化处理,如初级撞出原子(Primary Knock-on Atom,PKA)的条件设定和材料结构模型的建立。采用粒子输运软件GEANT4模拟中子辐照Zr、Zr_2Cu和Zr_2Ni,得到其PKA能谱,发现不同能量入射中子对应的PKA最高能量可达几十甚至几百keV,且三种材料中PKA能谱非常接近。计算三种Zr基合金的PKA数目,发现其分布非常接近,表明分子动力学模拟时可采用简化结构模型,以研究Zr基合金、Fe基合金;此外,计算了PKA散射角,获得不同能量中子产生的PKA最佳散射角,为分子动力学模拟所需的PKA运动方向提供理论依据。  相似文献   

19.
质子和中子引起的单粒子效应及其等效关系理论模拟   总被引:3,自引:0,他引:3  
根据器件几何尺寸、掺杂浓度、偏压等因素确定灵敏体积和临界电荷,从而提出单粒子效应的物理模型。考虑了质子和中子在硅中的弹性散射、非弹性散射、两体反应、多体反应以及质子的库仑散射等所有相互作用类型,采用蒙特卡罗方法模拟跟踪入射粒子与核的相互作用以及各种次级带是粒子和反冲核的能量沉积过程。采用Ziegler的拟合公式精确计算质子、a粒子、氚核、反冲核等带电离子的能量沉积。根据模拟结果确定了两种粒子引起的单粒子效应等效系数,并将模拟结果与实验数据进行了对比。  相似文献   

20.
近年来178Hfm2 31年的同核异能态被认为是用低能X射线触发使其释放储存能量的最合适候选者。为了探讨在178Hf中是否存在触发Kπ=16+同核异能态γ发射的门态,本工作首先用投影壳模型对178Hf的多准粒子态和集体激发态进行了研究,结果表明其它态位于距离16+同核异能态较远的地方。但当用包括γ自由度的组态限制(绝热阻塞)方法计算178Hf的多准粒子激发态时,结果显示有三个能级可能是16+同核异能态光退激的候选者,位能面计算的结果显示178Hf为轴对称硬核。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号