首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Fuel》2007,86(10-11):1452-1460
The pyrolysis of pistacia khinjuk seed was investigated with the aim to study the product distribution and their chemical compositions and to identify optimum process conditions for maximizing the bio-oil yield. Fast and catalytic pyrolysis of biomass sample with two selected commercial catalyst, namely BP 3189 and Criterion-424 have been conducted in a well-swept resistively heated fixed bed reactor under nitrogen atmosphere. The maximum bio-oil yield of 66.5% with the use of Criterion-424 and 69.2% with the use of BP 3189 were obtained at the catalytic pyrolysis conditions, while it was only 57.6% without catalyst. The bio-oils were investigated, using chromatographic and spectroscopic techniques.  相似文献   

2.
Rapid and catalytic pyrolysis of corn stalks   总被引:1,自引:0,他引:1  
Non-catalytic and catalytic rapid pyrolysis of corn stalks was studied in a tubular fixed-bed reactor. The optimum operating conditions giving the highest liquid yield was determined as pyrolysis temperature of 500 °C, sweeping gas flow rate of 400 cm3 min− 1 and heating rate of 500 °C min− 1. In the catalytic process, rapid pyrolysis of stalks was performed at the optimum conditions with catalysts such as ZSM-5, HY and USY. The highest liquid yield from the catalytic pyrolysis was 27.55% with ZSM-5, while the oil from non-catalytic pyrolysis was 33.30%. In the last part, various spectroscopic and chromatographic methods were applied for characterization of bio-oils. Although catalytic pyrolysis converts the long chains of alkanes and alkenes of the oils into lower weight hydrocarbons, the obtained oil yields were lower than those of non-catalytic pyrolysis. USY catalyst gives the highest amount of aromatics among the catalysts used. Moreover, TG–DTA analyses were applied on raw materials to investigate thermal degradation of corn stalks and calculate the kinetic parameters.  相似文献   

3.
This work studied the influence of additive concentration on the analytical pyrolysis of tobacco powder at 500°C. Additive mass concentration of 5, 10, and 20% ZnCl2 and 5, 10, and 20% MgCl2 were studied. The addition of ZnCl2 and MgCl2 to tobacco powder promoted the formation of vapors with higher contents of acetic acid and furfural and for both, the higher the concentration the lower the nicotine content. However, there were some losses related to bio-oil quality, such as higher contents of oxygenated compounds, ketones and aldehydes, and carboxylic acids. Results indicate that bio-oils with higher acetic acid and phenolics contents will be generated from tobacco residue with 5% MgCl2, and bio-oils with higher furfural contents will be produced from the residue with 20% MgCl2. The pyrolytic reaction of tobacco residue with 10% ZnCl2 would result in a fuel oil with ignition quality.  相似文献   

4.
Pyrolysis bio-oil contains abundant O-containing structures. Carbonyls are particularly important not only because they are abundant and exist in many forms (e.g. as acids, esters, ketones and aldehydes) but also because they are reactive and are a key consideration of bio-oil upgrading. This study aims to investigate the distribution of carbonyl groups in a variety of bio-oil samples prepared from the pyrolysis of mallee wood, bark and leaves in a fluidised-bed reactor. Some bio-oil samples also underwent esterification reactions with methanol in the presence of solid Amberlyst acid catalyst. The bio-oil samples were diluted with isopropanol prior to the acquisition of FT-IR spectra using a CaF2 liquid cell. The FT-IR spectra of bio-oils in the range of 1490–1850 cm−1 were deconvoluted with 9 Gaussian bands. Our results reveal that the bio-oils from the pyrolysis of wood, bark and leaves of the same mallee tree species had very different concentrations and types of carbonyls, which are related to the contents of hemicellulose, cellulose, lignin and extractives in the wood, bark and leaves. Our study also reveals that the carbonyls in the light and heavy fractions of a bio-oil may react differently during the reactions of bio-oil with methanol in the presence of the Amberlyst solid acid catalyst.  相似文献   

5.
《Fuel》2006,85(12-13):1851-1859
Pyrolysis of Euphorbia rigida and sesame stalk biomass samples with two selected commercial catalyst, namely DHC-32 and HC-K 1.3Q, have been conducted in a fixed-bed reactor. The effect of different catalysts and their ratio (5, 10 and 20% w/w) and pyrolysis temperature (500 and 750 °C) on the pyrolysis product yields were investigated and the obtained results were compared with similar experiments without catalyst. Bio-oil yield was increased comparing with non-catalytic experiments, at final pyrolysis temperature of 500 °C for both biomass samples and catalysts. In the catalytic experiments; when the temperature reached to 750 °C, although bio-oil product yield was reduced, the gas product yield was increased comparing with non-catalytic experiments.The pyrolysis oils were examined using spectroscopic and chromatographic analyses and then fractioned by column chromatography. Although the aliphatic and aromatic fractions were decreased and polar fraction was increased with catalytic pyrolysis of E. rigida; an opposite trend was observed in the sesame stalk pyrolysis oil, comparing with non-catalytic results.Obtained results were compared with petroleum fractions and determined the possibility of being a potential source of renewable fuels.  相似文献   

6.
通过表面响应法,以Box-Behnken试验原理,对生物质(玉米秸秆)的非催化热解进行三因素试验,其中生物油产率为响应值,温度、升温速率、氮气流速为自变量,确定最大生物油产率的工艺参数进行催化热解。以硅酸四乙酯为硅源,通过水热合成法合成了复合催化剂ZSM-5/SBA-15,并进行玉米秸秆的微波催化热解产物分析。通过XRD、SEM、TEM、NH3-TPD进行催化剂表征,得到复合催化剂不仅具有介孔催化剂SBA-15的性质,且兼备微孔催化剂ZSM-5的性质。通过GC-MS分析,复合催化剂ZSM-5/SBA-15的加入,相比非催化热解烃类收率(6.42%)和酚类收率(39.65%)都有所增加。  相似文献   

7.
离子液体-催化剂对甲基纤维素微波裂解产物分布的影响   总被引:1,自引:1,他引:0  
以离子液体1-丁基-3-甲基咪唑氯(IL)为添加剂、考察5A-Ca型分子筛、HNO3及FeCl3等催化剂对甲基纤维素(MC)微波裂解过程的影响。实验研究了IL用量、微波功率、作用时间及催化剂对MC裂解的影响,并通过GC-MS联用仪研究了微波裂解液体产物分布的变化。结果表明,不同催化剂导致了不同的液体产物分布,其中5A-Ca型分子筛催化剂可促进小分子物质的形成,同时使生物质油中的含氧量从37.43%降低到了34.82%;HNO3催化剂促进了醋酸甲酯、正丁醇及苯甲酸甲酯的生成;FeCl3作为催化剂时,促进了糠醛及5-甲基糠醛的生成。通过比较常规热解与微波裂解,发现微波裂解能在较短的时间内得到高的生物质油产率。  相似文献   

8.
Ferula orientalis L. stalks were liquefied in an autoclave in supercritical organic solvents (methanol, ethanol, 2-propanol, acetone and 2-butanol) with (NaOH, Na2CO3, ZnCl2) and without catalyst at five different temperatures ranging from 240 °C to 320 °C. The amounts of solid (unconverted raw material), liquid (bio-oil) and gas produced, as well as the composition of the resulting liquid phase, were determined. The effects of various parameters such as temperature, solvent, catalyst and ratio of catalyst on product yields were investigated. The results showed that conversion highly depends on the temperature and catalyst. The highest bio-oil yield (53.97%) was obtained using acetone with 10% zinc chloride at 300 °C. The liquid products were extracted with benzene and diethyl ether. Some of selected liquid products (bio-oils) were analyzed by elemental, FT-IR and GC–MS. 126 different compounds were identified by GC–MS in the liquid products obtained in ethanol at 300 °C.  相似文献   

9.
The chemical structure of liquid products of the wood biopolymers, i.e. cellulose, xylan and lignin pyrolysis at 450 °C with and without the 10 wt.% addition of potassium carbonate or zinc chloride was investigated. The yield of liquid products of pyrolysis was in the range of 24-44 wt.% and their form was depending on the chemical structure of pyrolyzed material. The potassium carbonate and zinc chloride addition to biopolymers has also influenced the temperature range of samples decomposition as well as the structure of resulted bio-oils. All bio-oils from biopolymer were dark-brown water-oil emulsions. Contrarily, bio-oils obtained from biopolymer with K2CO3 or ZnCl2 addition were orange liquids with well-separated water and oil phases. All analyses proved that the composition and the quality of bio-oil strongly depends on both the nature of the starting sample and the presence of the additive. The FT-IR analyses of oils showed that oxygen functionalities and hydrocarbons contents highly depend on the type of biopolymer. Results confirmed the significant removal and/or transformation of oxygen containing organic compounds due to the zinc chloride and potassium carbonate presence during pyrolysis process.  相似文献   

10.
苏银海  张书平  刘凌沁  熊源泉 《化工学报》2021,72(10):5206-5217
苯酚和合成气均为工业生产中重要的基础化工原料。以自制的活性炭为催化剂,以纤维素为原料实现了催化热解液相产物中苯酚和气相产物中CO的同时富集。实验发现,生物质灰分中的钾、热解过程中催化剂/纤维素质量比和热解温度均对气液相产物的品质有着不同程度的影响。研究表明:钾的存在不利于热解产物品质的提高。钾虽然提高了生物油中苯酚的富集度,但降低了实际产率。而热解气中CO的浓度和产率均下降。对催化热解条件的研究表明热解温度450℃,催化剂比例为1∶1时可获得最佳的热解产物。此时,生物油中酚类物质占可检测有机物相对含量的62.31%,其中苯酚为45.37%,产率为1.78%(质量)。热解气中CO的浓度和产率分别为69.21%(体积)和 169.95 ml/g,热值为12.93 MJ/m3。  相似文献   

11.
Microalgae are seen as potential biomass to be used in a biorefinery concept. Several technologies can be used to convert microalgal biomass, but pyrolysis is viewed as a unique pathway to obtain valuable chemicals distributed in three phases: liquid (bio-oil), gas (bio-gas) and solid (bio-char). The liquid phase, bio-oil, usually presents higher heating value than raw biomass, but acidity and oxygen content are major drawbacks. In situ catalyzed pyrolysis can help to decrease the oxygen content and acidity of pyrolytic bio-oils. Chlorella vulgaris and Scenedesmus obliquus were pyrolyzed in a fixed-bed reactor using commercial carbonate catalysts (Li2CO3, Na2CO3, K2CO3, MgCO3, SrCO3 and MnCO3). The catalysis pyrolysis temperature (375 °C) was selected from thermal degradation profiles obtained using thermogravimetry under nitrogen flow and corresponds to the maximum degradation rate for both microalgae. In spite of similar volatile and fixed carbon contents, microalgae performed differentially during pyrolysis mainly due to the different contents of carbohydrates, oils and proteins. Chlorella vulgaris and Scenedesmus obliquus showed bio-oil yield in the range 26–38 and 28–50 wt%, respectively. Only sodium carbonate was able to decrease the bio-char yield, confirming that carbonate catalysts prompt simultaneously gasification and carbonization reactions. Fourier transform infrared spectra of produced bio-oils showed a net decrease of acidity, associated with carbonyl species when carbonate catalysts were used. Bio-char morphology, for both microalgae, showed evidence of melting and resolidification of cell structures, which might be due to the lower melting points of the pyrolysis products obtained from proteins and lipids. © 2020 Society of Chemical Industry  相似文献   

12.
A. Aho  K. Eränen  M. Hupa 《Fuel》2008,87(12):2493-2501
Catalytic pyrolysis of biomass from pine wood was carried out in a fluidized bed reactor at 450 °C. Different structures of acidic zeolite catalysts were used as bed material in the reactor. Proton forms of Beta, Y, ZSM-5, and Mordenite were tested as catalysts in the pyrolysis of pine, while quartz sand was used as a reference material in the non-catalytic pyrolysis experiments. The yield of the pyrolysis product phases was only slightly influenced by the structures, at the same time the chemical composition of the bio-oil was dependent on the structure of acidic zeolite catalysts. Ketones and phenols were the dominating groups of compounds in the bio-oil. The formation of ketones was higher over ZSM-5 and the amount of acids and alcohols lower than over the other bed materials tested. Mordenite and quartz sand produced smaller quantities of polyaromatic hydrocarbons than the other materials tested. It was possible to successfully regenerate the spent zeolites without changing the structure of the zeolite.  相似文献   

13.
Catalytic microwave pyrolysis of peanut shell (PT) using Fe3O4, Na2CO3, NaOH, and KOH for production of phenolic-rich bio-oil was investigated. The effects of catalyst type, pyrolysis temperature, and biomass/catalyst ratio on product distribution and composition were studied. Among four catalysts tested, Na2CO3 significantly increased the selectivity of phenolic compounds in bio-oil during microwave pyrolysis. The highest phenolics concentration of 57.36% (area) was obtained at 500 °C and PT:Na2CO3 ratio of 8: 1. The catalytic effect to produce phenolic compounds among all the catalysts tested can be summarized in the order Na2CO3>Fe3O4>KOH>NaOH. Using KOH and NaOH as catalyst resulted in formation of bio-oil with enhanced higher heating value (HHV) and lower oxygen content, indicating that these catalysts enhanced the deoxygenation of bio-oil. The scanning-electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS) analysis of char particles showed the melting of magnetite and vaporizationcondensation of mineral salt catalysts on char particle, which was attributed to extremely high local temperatures during microwave heating.  相似文献   

14.
利用Box-Behnken试验设计,采用响应面法对椰衣微波热解工艺进行优化,考察了热解温度、氮气流速、升温速率和热解时间对液体产物产率的影响。试验结果表明:回归方程模型拟合较好且显著。各个因素对液体产物的产率影响的主次顺序为热解温度>氮气流速>热解时间>升温速率。最佳热解条件为热解温度550℃、氮气流速80 mL/min、升温速率20℃/min、热解时间25 min,在此条件下液体产物产率为38.28%。对液体产物的性质和组成分析发现:优化条件下得到的液体产物中含水量为14.32%,pH值为3.78,热值为24.61 MJ/kg。通过GC-MS对液体产物进行分析,最佳条件下得到的液体产物中主要含有酚、醛、酸、酮类化合物,分别为84.35%、6.01%、3.37%、2.05%,其中酚类化合物的量最高,包括苯酚(33.51%)、对甲酚(9.71%)、2-甲氧基苯酚(10.99%)和4-乙基-2-甲氧基苯酚(5.57%)。  相似文献   

15.
《Fuel》2006,85(14-15):2202-2212
MCM-41, is one of the latest members of the mesoporous family of materials. They possess a hexagonal array of uniform mesopores (1.4–10 nm), high surface areas (>1000 m2/g) and moderate acidity. Due to these properties the MCM-41 materials are currently under study in a variety of processes as catalysts or catalyst supports. The objective of this study was to evaluate different types of MCM-41 materials as potential catalysts in the catalytic biomass pyrolysis process. We expected that the very high pore size and the mild acidity of these materials could be beneficial to reformulate the high molecular weight primary molecules from biomass pyrolysis producing useful chemical (and especially phenolic compounds) and lighter bio-oil with less heavy molecules. Three different samples of Al-MCM-41 materials (with different Si/Al ratio) and three metal containing mesoporous samples (Cu–Al-MCM-41, Fe–Al-MCM-41 and Zn–Al-MCM-41) have been synthesised, characterized and tested as catalysts in the biomass catalytic pyrolysis process using a fixed bed pyrolysis combined with a fixed catalytic reactor and two different types of biomass feeds. Compared to conventional (non-catalytic) pyrolysis, it was found that the presence of the MCM-41 material alters significantly the quality of the pyrolysis products. All catalysts were found to increase the amount of phenolic compounds, which are very important in the chemical (adhesives) industry. A low Si/Al ratio was found to have a positive effect on product yields and composition. Fe–Al-MCM-41 and Cu–Al-MCM-41 are the best metal-containing catalysts in terms of phenols production. The presence of the Al-MCM-41 material was also found to decrease the fraction of undesirable oxygenated compounds in the bio-oil produced, which is an indication that the bio-oil produced is more stable.  相似文献   

16.
Thermochemical liquefaction characteristics of Spirulina, a kind of high-protein microalgae, were investigated with the sub- and supercritical ethanol as solvent in a 1000 mL autoclave. The influences of various liquefaction parameters on the yields of products (bio-oil and residue) from the liquefaction of Spirulina were studied, such as the reaction temperature (T), the S/L ratio (R1, solid: Spirulina, liquid: ethanol), the solvent filling ratio (R2) and the type and dosage of catalyst. Without catalyst, the bio-oil yields were in the range of 35.4 wt.% and 45.3 wt.% depending on the changes of T, R1 and R2. And the bio-oil yields increased generally with increasing T and R2, while the bio-oil yields reduced with increasing R1. The FeS catalyst was certified to be an ideal catalyst for the liquefaction of Spirulina microalgae for its advantages on promoting bio-oil production and suppressing the formation of residue. The optimal dosage of catalyst (FeS) was ranging from 5-7 wt.%. The elemental analyses and FT-IR and GC-MS measurements for the bio-oils revealed that the liquid products have much higher heating values than the crude Spirulina sample and fatty acid ethyl ester compounds were dominant in the bio-oils, irrespective of whether catalyst was used.  相似文献   

17.
分级冷凝与电捕获器分离精制生物油研究   总被引:1,自引:0,他引:1  
利用分级冷凝系统及电捕获器分离收集生物油,共得到5种生物油。研究了5种生物油的产率分布及其含水量、热值、黏度、pH等理化特性,分析了生物油的化学组成,考察了化合物在5种生物油中的分布,同时对分级冷凝系统及电捕获器分离生物油的效率作了统计评价。研究表明,电捕获器提高了生物油25.9%的产率,通过分级冷凝系统可以有效地分离脱除生物油中的水分。分级冷凝系统及电捕获器可以完全分离大分子量的酚类、醛酮类物质,但对乙酸等小分子量的物质分离效果不显著。  相似文献   

18.
Catalytic pyrolysis of biomass in inert and steam atmospheres   总被引:1,自引:0,他引:1  
Ersan Pütün  Funda Ate? 《Fuel》2008,87(6):815-824
The objective of this study was to investigate thermal conversion of a perennial shrub, Euphorbia rigida biomass sample with catalyst in inert (N2) and steam atmospheres. Experimental studies were conducted in a well swept fixed bed reactor with a heating rate of 7 °C/min to a final pyrolysis temperature of 550 °C and with a mean particle size of 0.55 mm in order to determine the effect of different atmospheres with various catalyst ratios on pyrolysis yields and characteristics. The catalyst ratios were 5%, 10% and 20% (w/w) under nitrogen atmosphere with flow rates of 50, 100, 200 and 400 cm3/min and steam atmosphere with well-swept velocities of 12, 25 and 52 cm3/min. The optimum oil yield was obtained as 32.1% at the nitrogen flow rate of 200 cm3/min, while it was obtained as 38.6% at steam flow rate of 25 cm3/min when a 10% catalyst by weight according to the biomass was used. Higher oil yields were observed when biomass sample was treated in steam atmosphere than in inert (N2) atmosphere. The oil composition was then analysed by elemental analyses techniques such as IR and GC-MS. The oil products were also fractionated by column chromatography. The bio-oils obtained at both atmospheres contain mainly n-alkanes and alkenes, aromatic compounds; mainly benzene and derivatives and PAHs, nitrogenated compounds and ketones, carboxylic acids, aldehydes, phenols and triterpenoid compounds. More oxygenated compounds and less substituted alkanes and alkenes were obtained in catalytic pyrolysis of E. rigida in the steam atmosphere. The experimental and chemical characterisation results showed that the oil obtained from perennial shrub, E. rigida can be used as a potential source of renewable fuel and chemical feedstock.  相似文献   

19.
This paper presents the studies on the liquefaction of three types of oil palm biomass; empty fruit bunch (EFB), palm mesocarp fiber (PMF) and palm kernel shell (PKS) using water at subcritical and supercritical conditions. The effect of temperature (330, 360, 390 °C) and pressure (25, 30, 35 MPa) on bio-oil yields were investigated in the liquefaction process using a Inconel batch reactor. The optimum liquefaction condition of the three types of biomass was found to be at supercritical condition of water i.e. at 390 °C and 25 MPa, with PKS yielding the maximum bio-oil yield of 38.53 wt%, followed by EFB and PMF, with optimum yields of 37.39 wt% and 34.32 wt%, respectively. The chemical compositions of the bio-oils produced at optimum condition were analyzed using GC–MS and phenolic compounds constituted the major portion of the bio-oils, with other minor compounds present such as alcohols, ketones, aromatic hydrocarbons and esters.  相似文献   

20.
Catalytic pyrolysis of spruce sawdust was carried out in a bubbling fluidized-bed reactor using HZSM-5 catalysts. The effects of space velocity, catalyst deactivation, catalyst acidity and catalyst regeneration were studied. The use of catalysts decreased the yield of organic liquids compared to non-catalytic yields while the yields of pyrolytic water and gases increased. Decreasing the space velocity enhanced these effects. The rate of catalyst deactivation depended on the acidity of the catalyst, with more acidic catalysts deactivating more rapidly. Using a catalyst with a Si/Al ratio of 140 resulted in the largest changes in bio-oil properties. Periodic regeneration of the catalyst in the fluidized-bed reactor was also demonstrated using varying regeneration times and temperatures. It was shown that compared to BFB reactors, CFB reactor types would offer better operating characteristics for commercial scale catalytic pyrolysis processes in regard to vapour residence times, and catalyst activity and regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号