首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper describes variational formulation and finite element discretization of surface tension. The finite element formulation is cast in the Lagrangian framework, which describes explicitly the interface evolution. In this context surface tension formulation emerges naturally through the weak form of the Laplace–Young equation.The constitutive equations describing the behaviour of Newtonian fluids are approximated over a finite time step, leaving the governing equations for the free surface flow function of geometry change rather than velocities. These nonlinear equations are then solved by using Newton-Raphson procedure.Numerical examples have been executed and verified against the solution of the ordinary differential equation resulting from a parameterization of the Laplace-Young equation for equilibrium shapes of drops and liquid bridges under the influence of gravity and for various contact angle boundary conditions.  相似文献   

2.
The Reynolds' equation, which governs the pressure distribution in the oil film of a lubricated bearing, has been solved numerically using finite difference and finite element methods. The latter depends on finding the integral formulation of the Reynold's equation, which is minimized to determine the pressure distribution. The finite control volume method uses the basic flow equations, assumes a given interpolation function for the pressure and, by considering the net flow towards each nodal point, the geometry stiffness is obtained which is identical to the element stiffness matrix obtained by the classical finite element approach. The motivation of the finite control volume method (FCVM) lies in the fact that the calculus of variation, a stumbling block for solution of certain flow problems, is not considered.  相似文献   

3.
A p-version least-squares finite element formulation for non-linear problems is presented and applied to the steady-state, one-dimensional Burgers' equation. The second-order equation is recast as a set of first-order equations which permit the use of C0 elements. The primary and auxiliary variables are approximated using equal-order p-version hierarchical approximation functions. The system of non-linear simultaneous algebraic equations resulting from the least-squares process is solved using Newton's method with a line search. The use of ‘exact’ and ‘reduced’ quadrature rules is investigated and the results are compared. The formulation is found to produce excellent results when the ‘exact’ integration rule is used. The combination of least-squares finite element formulation and p-version works extremely well for Burgers' equation and appears to have great potential in fluid dynamics problems.  相似文献   

4.
本文采用有限元和边界元技术分析了重载径向轴承的三维弹性流体润滑(EHL)问题,并提出了一种精度高、收敛快的加权迭代计算模式,用该计算模式成功地求解了由二阶Reynolds方程、粘压方程和三维弹性方程组成的非线性方程组,得到了在各种大偏心率下轴承材料分别为钢、铜和巴氏合金的径向轴承的弹流静特性参数。  相似文献   

5.
In this paper, the formulation of six-point and nine-point finite element equations for the solution of the diffusion-convection equation is presented. The six-point equation requires the solution of a tridiagonal system of equations and the nine-point centred equation is treated as a solution of a boundary value problem which leads to a large linear system of equations. Some numerical experiments are presented and the comparison with existing methods is included.  相似文献   

6.
A stabilized, mixed finite element formulation for modelling viscoplastic flow, which can be used to model approximately steady‐state metal‐forming processes, is presented. The mixed formulation is expressed in terms of the velocity, pressure and state variable fields, where the state variable is used to describe the evolution of the material's resistance to plastic flow. The resulting system of equations has two sources of well‐known instabilities, one due to the incompressibility constraint and one due to the convection‐type state variable equation. Both of these instabilities are handled by adding mesh‐dependent stabilization terms, which are functions of the Euler–Lagrange equations, to the usual Galerkin method. Linearization of the weak form is derived to enable a Newton–Raphson implementation into an object‐oriented finite element framework. A progressive solution strategy is used for improving convergence for highly non‐linear material behaviour, typical for metals. Numerical experiments using the stabilization method with hierarchic shape functions for the velocity, pressure and state variable fields in viscoplastic flow and metal‐forming problems show that the stabilized finite element method is effective and efficient for non‐linear steady forming problems. Finally, the results are discussed and conclusions are inferred. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
Based on a variational principle due to Gurtin, for linear elastodynamics, a finite element method in terms of stresses is developed for wave propagation problems. The finite element equations are simultaneous integral equations in time, with the peculiarity that they are equivalent to simultaneous linear differential equations with zero initial conditions. Written as differential equations, the finite element equations are of the form where [H] is a symmetric positive-semidefinite matrix, [Q] is a symmetric positive-definite matrix and the stresses are represented by {s?}. This is, of course, the same form as the equations for the displacement formulation. As a demonstration of the validity of the formulation numerical results are compared with a solution for a triangular-shaped strip load applied to an elastic half-space as a ramp function of time. This solution is obtained by numerical integration of the exact solution for Lamb's problem of a line load suddenly applied to a half-space. The agreement is found to be generally very good. As a further example, the case of a plate subject to uniform tension on two ends and containing a hole in the centre is presented. The results are found to be reasonable in that the characteristic stress concentration occurs near the hole, and away from the hole the results are similar to the solution for an infinitely wide plate.  相似文献   

8.
We introduce a coupled finite and boundary element formulation for acoustic scattering analysis over thin‐shell structures. A triangular Loop subdivision surface discretisation is used for both geometry and analysis fields. The Kirchhoff‐Love shell equation is discretised with the finite element method and the Helmholtz equation for the acoustic field with the boundary element method. The use of the boundary element formulation allows the elegant handling of infinite domains and precludes the need for volumetric meshing. In the present work, the subdivision control meshes for the shell displacements and the acoustic pressures have the same resolution. The corresponding smooth subdivision basis functions have the C1 continuity property required for the Kirchhoff‐Love formulation and are highly efficient for the acoustic field computations. We verify the proposed isogeometric formulation through a closed‐form solution of acoustic scattering over a thin‐shell sphere. Furthermore, we demonstrate the ability of the proposed approach to handle complex geometries with arbitrary topology that provides an integrated isogeometric design and analysis workflow for coupled structural‐acoustic analysis of shells.  相似文献   

9.
The non-linear response of soft hydrated tissues under physiologically relevant levels of mechanical loading can be represented by a two-phase continuum model based on the theory of mixtures. The governing equations for a biphasic soft tissue, consisting of an incompressible solid and an incompressible, inviscid fluid, under finite deformation are presented and a finite element formulation of this highly non-linear problem is developed. The solid phase is assumed to be hyperelastic, and the stress-strain relations for the solid phase are defined in terms of the free energy function. A finite element model is formulated via the Galerkin weighted residual method coupled with a penalty treatment of the continuity equation for the mixture. Using a total Lagrangian formulation, the non-linear weighted residual statement, expressed with respect to the reference configuration, leads to a coupled non-linear system of first order differential equations. The non-linear constitutive equation for the solid phase elasticity is incrementally linearized in terms of the second Piola-Kirchhoff stress and the corresponding Lagrangian strain. A tangent stiffness matrix is defined in terms of the free energy function; this matrix definition can be applied to any free energy function, and will yield a symmetric matrix when the free energy function is convex. An unconditionally stable implicit predictor-corrector algorithm is used to obtain the temporal response histories. The confined compression mechanical test of soft tissue in stress relaxation is used as an example problem. Results are presented for moderate and rapid rates of loading, as well as small and large applied strains. Comparison of the finite element solution with an independent finite difference solution demonstrates the accuracy of the formulation.  相似文献   

10.
王晓力  朱克勤 《工程力学》2002,19(5):160-164
基于应力偶理论和Elrod空化算法建立了滑动轴承热流体动力润滑数学模型,数值求解了应力偶流体的Reynolds方程、油膜能量方程及轴瓦热传导方程,考察了应力偶效应对滑动轴承热流体动力润滑性能产生的影响。结果表明:应力偶流体明显地提高了油膜压力,降低了轴承摩擦系数,同时也使端泄流量和轴承的温度场有所改变。  相似文献   

11.
This paper presents an analysis of thrust bearings with Michell pads under steady state conditions at the limits of the laminar flow taking the inertia forces in radial and circumferential directions into consideration and assuming that the bearing operates under, THD, thermohydrodynamic boundary conditions. The governing equations of the problem allowing for temperature rise within the oil film as well heat conduction inside the bearing elements are derived. The velocity components including both inertia terms are derived and inserted into the integrated continuity equation to obtain a Reynolds type differential equation. The whole equation system represents a non-linear systen, because the individual variables depend on each other. The equation system is discretized by means of finite difference method and solved simultaneously by means of an iterative scheme to find the characteristic values of the bearing. The analysis shows that the inertia forces have a pronounced effect on the bearing characteristic values.  相似文献   

12.
A new finite element technique for two-dimensional viscous incompressible fluid flow problems is presented in this paper. The vorticity transport equation is integrated in a small control volume, which results in the conservation law of vorticity. The finite element technique is applied to this equation together with the continuity equation, where simple linear triangular elements with three nodes are used for the formulation. Resulting sets of algebraic equations are solved by the use of a kind of relaxation method. Numerical results for viscous flow past a cavity show good agreement with experimental results.  相似文献   

13.
Formulation of the problem for the feedback displacement control of a vibrating laminated plate with orthotropic piezoelectric sensors and actuators is given in terms of an integral equation. The objective is to develop a formulation which facilitates the numerical solution to obtain the eigenfrequencies and eigenfunctions of the piezo-controlled plate. The control is carried out via piezoelectric sensors and actuators which are of orthorhombic crystal class mm2 with poling in the z direction. The initial formulation of the problem is given in terms of a differential equation which is the conventional formulation most often used in the literature. The conversion to an integral equation formulation is achieved by introducing an explicit Green’s function. Explicit expressions for the kernel of the integral equation are given and the method of solution using the new formulation is outlined. The solution technique involves approximating the integral equation with an infinite system of linear equations and using a finite number of these equations to obtain the numerical results.  相似文献   

14.
A hybrid finite element model based on F-Trefftz kernels (fundamental solutions) is formulated for analyzing Dirichlet problems associated with two-dimensional nonlinear Poisson-type equations including nonlinear Poisson-Boltzmann equation and diffusion-reaction equation. The nonlinear force term in the Poisson-type equation is frozen by introducing the imaginary terms at each Picard iteration step, and then the induced Poisson problem is solved by the present hybrid finite element model involving element boundary integrals only, coupling with the particular solution method with radial basis function interpolation. The numerical accuracy of the present method is investigated by numerical experiments for problems with complex geometry and various nonlinear force functions.  相似文献   

15.
李海滨  黄洪钟  孙占全 《工程力学》2003,20(6):111-115,27
目前,对模糊有限元方程的求解思路是:在确定性有限元方程中引入参数的模糊性,然后对应一系列阈值l,将模糊有限元平衡方程转化为一系列确定性区间方程组,再求解这些区间方程组。然而,至今区间方程组的求解问题尚未解决,因而模糊有限元方程组的求解亦未得到有效的解法。将模糊系数规划与弹性力学的行为本质棗即物体的平衡过程为一个二次方程的能量极小化过程相结合,得到了一种新的模糊有限元求解方法,数值仿真实验表明该方法可行。  相似文献   

16.
In this paper we present a Legendre spectral element method for solution of multi-dimensional unsteady change-of-phase Stefan problems. The spectral element method is a high-order (p-type) finite element technique, in which the computational domain is broken up into general (curved) quadrilateral macroelements, and the solution, data and geometry are expanded within each element in terms of tensor-product Lagrangian interpolants. The discrete equations are generated by a Galerkin formulation followed by Gauss–Lobatto Legendre quadrature, for which it is shown that exponential convergence to smooth solutions is obtained as the polynomial order of fixed elements is increased. The spectral element equations are inverted by conjugate gradient iteration, in which the matrix-vector products are calculated efficiently using tensor-product sum-factorization. To solve the Stefan problem numerically, the heat equations in the liquid and solid phases are transformed to fixed domains applying an interface-local time-dependent immobilization transformation technique. The modified heat equations are discretized using finite differences in time, resulting at each time step in a Helmholtz equation in space that is solved using Legendre spectral element elliptic discretizations. The new interface position is then computed using a variationally consistent flux treatment along the phase boundary, and the solution is projected upon the corresponding updated mesh. The rapid convergence rate and stability of the method are discussed, and numerical results are presented for a one-dimensional Stefan problem using both a semi-implicit and a fully implicit time-stepping scheme. Finally, a two-dimensional Stefan problem with a complex phase boundary is solved using the semi-implicit scheme.  相似文献   

17.
Magnetostatic field problems are solved in three dimensions by applying a variational method that employs finite elements. Formulation through a partial differential equation allows solution for the magnetic vector potential given an inhomogeneous, orthotropic medium and a distributed current source. Three vector boundary conditions are discussed and interior sheet currents are allowed within the medium. In addition, the Lorentz condition is enforced by including a penalty term in the energy functional. A point-iterative algorithm is used to solve the set of equations resulting from finite element discretization. This method is particularily suitable for regions with regular geometry and a moderate (1,000 to 10,000) number of unknowns.  相似文献   

18.
We propose a robust immersed finite element method in which an integral equation formulation is used to enforce essential boundary conditions. The solution of a boundary value problem is expressed as the superposition of a finite element solution and an integral equation solution. For computing the finite element solution, the physical domain is embedded into a slightly larger Cartesian (box‐shaped) domain and is discretized using a block‐structured mesh. The defect in the essential boundary conditions, which occurs along the physical domain boundaries, is subsequently corrected with an integral equation method. In order to facilitate the mapping between the finite element and integral equation solutions, the physical domain boundary is represented with a signed distance function on the block‐structured mesh. As a result, only a boundary mesh of the physical domain is necessary and no domain mesh needs to be generated, except for the non‐boundary‐conforming block‐structured mesh. The overall approach is first presented for the Poisson equation and then generalized to incompressible viscous flow equations. As an example of fluid–structure coupling, the settling of a heavy rigid particle in a closed tank is considered. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
A finite element formulation for the solution of time-dependent inelastic deformation problems for metallic structures, in the presence of transient thermal stresses, is presented in this paper. A rate formulation of the equations is used and any of a number of recently proposed combined creep-plasticity constitutive models with state variables can be adopted to describe material behaviour. The computer program developed can solve planar (plane strain and stress) and axisymmetric problems. Using one of the above-mentioned constitutive models, numerical results are presented for several illustrative problems, and comparisons of results, using either the quasi-steady or the unsteady diffusion equation for the determination of the temperature field, are carried out.  相似文献   

20.
The proposed algorithm solves equations governing the behaviour of semiconductor devices using a finite element technique. Electrostatic potential and the hole and electron quasi-Fermi potentials are chosen as the solution variables. The equation set is written in a steady-state form using these three variables and this gives rise to a system of three nonlinear partial differential equations. The equations, which are intimately coupled, are solved simultaneously using a weighted residual formulation. Convergence of the nonlinear solution procedure using any initial guess is guaranteed by employing ‘incremental loading’ coupled to a test for divergence that is applied at each iterative step. The triangular elements used in the program are automatically generated from a mesh of eight-node isoparametric elements that is itself an automatically generated subdivision of a small number of eight-node (super) elements. A novel method of generating an initialisation state using the boundary element method is also described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号