首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Current ethanol production processes using crops such as corn and sugar cane are well established. However, the utilization of cheaper biomasses such as lignocellulose could make bioethanol more competitive with fossil fuels while avoiding the ethical concerns associated with using potential food resources. RESULTS: Oil palm empty fruit bunches (OPEFB), a lignocellulosic biomass, was pretreated using NaOH to produce bioethanol. The pretreatment and enzymatic hydrolysis conditions were evaluated by response surface methodology (RSM). The optimal conditions were found to be 127.64 °C, 22.08 min, and 2.89 mol L?1 for temperature, reaction time, and NaOH concentration, respectively. Regarding enzymatic digestibility, 50 FPU g?1 cellulose of cellulase was selected as the test concentration, resulting in a total glucose conversion rate (TGCR) of 86.37% using the Changhae Ethanol Multi Explosion (CHEMEX) facility. Fermentation of pretreated OPEFB using Saccharomyces cerevisiae resulted in an ethanol concentration of 48.54 g L?1 at 20% (w/v) pretreated biomass loading, along with simultaneous saccharification and fermentation (SSF) processes. Overall, 410.48 g of ethanol were produced from 3 kg of raw OPEFB in a single run, using the CHEMEX_50 L reactor. CONCLUSION: The results presented here constitute a significant contribution to the production of bioethanol from OPEFB. Copyright © 2011 Society of Chemical Industry  相似文献   

2.
This article describes the graft copolymerization of poly(methyl methacrylate) (PMMA) onto oil‐palm empty fruit bunches (OPEFBs) with a fiber length of less than 75 μm. The graft copolymerization was carried out under a nitrogen atmosphere by a free‐radical initiation technique in an aqueous medium. Hydrogen peroxide and ferrous ions were used as a redox initiator/cocatalyst system. The PMMA homopolymer that formed during the reaction was removed from the grafted copolymers by Soxhlet extraction. Determining the effects of the reaction period, reaction temperature, and monomer concentration on the grafting percentage was the main objective, and they were investigated systematically. The optimum reaction period, reaction temperature, monomer concentration, and initiator concentration were 60 min, 50°C, 47.15 × 10?3 mol, and 3.92 × 10?3 mol, respectively. The maximum percentage of grafting achieved under these optimum conditions was 173%. The presence of PMMA functional groups on OPEFB and the enormous reduction of the hydroxyl‐group absorption band in PMMA‐g‐OPEFB spectra provided evidence of the successful grafting reaction. The improvement of the thermal stability of PMMA‐g‐OPEFB also showed the optimal achievement of the grafting reaction of PMMA onto OPEFB. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

3.
BACKGROUND: Succinic acid is an important precursor of numerous products, including pharmaceuticals, feed additives, green solvents, and biodegradable polymers. In this work, strategies of pH control and glucose‐fed batch fermentation for producing succinic acid using Actinobacillus succinogenes CGMCC1593 were carefully optimized. RESULTS: The production of succinic acid was stable within the pH range 6.0–7.2. Both cell growth and succinic acid production were inhibited by high concentrations of sodium and calcium ions, while there was no significant inhibition by magnesium ions. With an initial glucose concentration of 25 g L?1, and glucose concentration was maintained between 10 and 15 g L?1 during the course of fed batch fermentation, succinic acid concentration, productivity and yield were 60.2 g L?1, 1.3 g L?1 h?1 and 75.1%, respectively. CONCLUSION: Of all the neutralization reagents used for pH control of A. succinogenes CGMCC1593, solid MgCO3 was the most satisfactory. With increase of initial glucose concentration, the time course showed a longer growth lag period and the maximum biomass declined, while more carbon was diverted to succinate synthesis. The results obtained in this study should be helpful for the design of a highly efficient succinic acid production process. Copyright © 2008 Society of Chemical Industry  相似文献   

4.
Poly[(diethylaminoethyl methacrylate)‐graft‐(ethylene glycol)] hydrogels were prepared with a molar ratio of 10:1 of diethylaminoethyl methacrylate to poly(ethylene glycol) of number‐average molecular weights (Mn) 200, 400 and 1000 g mol?1 using tetra(ethylene glycol) dimethacrylate to give a crosslinking ratio between 0.5 and 4.0 %. Glucose oxidase and catalase were immobilized in the matrix during polymerization. The maximum enzyme loading used was 6.6 × 10?4 g of glucose oxidase per g of polymer. The equilibrium and dynamic swelling properties of these hydrogels were investigated. The pH‐dependent equilibrium swelling characteristics showed a sharp transition between the swollen and the collapsed state at pH 7.0. The dynamic response of the hydrogel discs to pH was analyzed in pulsatile pH conditions. The effects of particle size, crosslinking and molecular weight of poly(ethylene glycol) (PEG) on the dynamic swelling response were investigated. The pulsatile nature of the response was analyzed using Boltzmann superposition. Swelling–pH master curves were obtained. Copyright © 2004 Society of Chemical Industry  相似文献   

5.
Measured intrinsic viscosities ([η]) at several temperatures (T) within the interval 280–350 K have been found to increase with T for solutions of poly(phenyl acrylate) (PPA) in ethyl lactate. A decrease of [η] with T was observed for aqueous solutions of poly(ethylene oxide) (PEO) at several temperatures within the range 276–358 K. The results have been treated on the basis of eight excluded volume theories, among which the best consistency was afforded by those of Kurata-Stockmayer-Roig, Fixman, and Stockmayer (Padé). These yielded values of ?3.4 × 10?3 to ?4.7 × 10?3 deg?1 and ?0.9 × 10?3 to ?2.4 × 10?3 deg?1 for the temperatur coefficient of the unperturbed dimensions of PPA and PEO, respectively. The derived θ-temperatures were 287 K as the upper critical solution temperature for PPA in ethyl lactate and 365–382 K as the lower critical solution temperature for aqueous PEO.  相似文献   

6.
Biodegradable polyesters such as poly(butylene succinate) (PBS), poly(propylene succinate) (PPS), and poly(butylene succinate‐co‐propylene succinate)s (PBSPSs) were synthesized respectively, from 1,4‐succinic acid with 1,4‐butanediol and 1,3‐propanediol through a two‐step process of esterification and polycondensation in this article. The composition and physical properties of both homopolyesters and copolyesters were investigated via 1H NMR, DSC, TGA, POM, AFM, and WAXD. The copolymer composition was in good agreement with that expected from the feed composition of the reactants. The melting temperature (Tm), crystallization temperature (Tc), crystallinity (X), and thermal decomposition temperature (Td) of these polyesters decreased gradually as the content of propylene succinate unit increased. PBSPS copolyesters showed the same crystal structure as the PBS homopolyester. Besides the normal extinction crosses under the polarizing optical microscope, the double‐banded extinction patterns with periodic distance along the radial direction were also observed in the spherulites of PBS and PBSPS. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
Poly(alkylene terephthalate)s represent one of the most frequently used polymer classes worldwide. Well‐known examples include poly(ethylene terephthalate) (n = 2) and poly(butylene terephthalate) (n = 4). The conventional synthesis method for these polymers is based on melt polycondensation, a two‐stage process performed under harsh conditions that includes the synthesis of an intermediate prepolymer and the presence of a catalyst, which may induce toxicity issues. The present work reports on a straightforward single‐step solution polycondensation method performed under mild conditions and in the absence of a catalyst. A homologous series of poly(alkylene terephthalate)s (n = 5 ? 10) of molar masses up to 20 000 g mol?1 and dispersity <2.4 was synthesized and characterized thoroughly. Great attention was given to the thermal properties assessment by using state‐of‐the‐art techniques and a highly sensitive prototype technique called rapid heat ? cool DSC. Similar to melt‐synthesized polyesters, a particular odd ? even trend of the thermal properties versus the number of methylene groups within the monomer unit was revealed. To the best of our knowledge, this is the first report covering a single‐step solution‐based polycondensation performed in the absence of a catalyst that results in highly reproducible polyesters possessing unaltered thermal properties compared to polyesters synthesized through industrially applied conventional routes. © 2017 Society of Chemical Industry  相似文献   

8.
ω,ω-Diphenolpolystyrenes (6) can be synthesized in quantitative yields by reacting poly(styryl)lithium with 1,1-bis(4-t-butyldimethylsiloxyphenyl)ethylene (1), followed by methanol termination and hydrolysis with dilute acid. The initially formed 1,1-bis(4-t-butyldimethylsiloxyphenyl)alkyllithium can be reacted with additional styrene monomer to form a polystyrene internally substituted with two in-chain phenol groups after methanol termination and acid hydrolysis. The diphenol-substituted polystyrene condensation macromonomers have been characterized by end-group titration, size exclusion chromatography, thin-layer chromatography, and ultraviolet-visible, 1H and 13C NMR spectroscopy. Chain-extension reactions of 6 (Mn = 2.6 × 103g mol?1) with bis(trichloromethyl)carbonate produced the corresponding comb-type, branched polymer with estimated Mn(SEC, polystyrene standards) = 1.2 × 104g mol?1 and no detectable residual condensation macromonomer. The second order rate constants for the addition reaction of excess poly(styryl)lithium with 1 and with 1-(4-t-butyldimethylsiloxy-phenyl)-1-phenylethylene (3) have been estimated to be 1.7 × 10?3M?1/2S?1 and 3.2 × 10?3M?1/2S?1 respectively. A sigma value (σ) of ?0.46 has been estimated for the t-butyldimethylsiloxy substituent.  相似文献   

9.
Graft copolymerization of methyl methacrylate (MMA) onto oil palm empty fruit bunch fiber (OPEFB) was successfully carried out in aqueous medium using hydrogen peroxide as an initiator. Results from the investigation of the optimum conditions for grafting are presented. Maximum percentage of grafting was achieved when the amount of initiator, cocatalyst, and nitric acid were 5.877 × 10?3 mol, 2.63 × 10?4 mol, and 3.24 × 10?3 mol, respectively. The optimum reaction temperature was 50°C and the reaction period was 120 min. The highest percentage of grafting and grafting efficiency were 220 and 47%, respectively, under optimum conditions. The grafted copolymer was characterized by FTIR spectroscopy and scanning electron microscopy. The presence of a band at 1730 cm?1 provides strong evidence of grafting. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2233–2238, 2003  相似文献   

10.
A series of chain‐coupled polyesters based on tartaric acid was synthesized and characterized following a two‐step procedure. In the first step, tartaric acid based hydroxyl terminated polyesters with various alkane diols were prepared and then, in a second step, a chain‐coupling approach using hexamethylene diisocyanate was employed on the synthesized polyesters to prepare a series of chain‐coupled polyesters. The number‐average molecular weights (Mn) of the polyesters were found to vary in the range (4.8 ? 28.1) × 103 g mol?1. Thermomechanical studies demonstrate that the storage modulus of the chain‐coupled polyesters decreases with increasing polymethylene chain length which is attributable to enhanced flexibility. The isolation of bacteria on medium containing polymer as the sole source of carbon indicates the ability of the synthesized polyesters to be taken up by microorganisms for growth. © 2013 Society of Chemical Industry  相似文献   

11.
A dilatometer is described to study the temperature dependence of density (ρ) of solid and semiliquid polymers and the following linear relations have been established. Atactic poly(vinylisobutyl ether) (25–90°C): ρ = 0.9166 ? 7.15 × 10?4 × T. Isotactic poly(vinylisobutyl ether) (25–70°C): ρ = 0.9184 ? 7.13 × 10?4 × T. Poly(n-butyl methacrylate) (90–150°C): ρ = 1.0622 ? 8.41 × 10?4 × T. Poly(dimethyl siloxane) (30–51°C, using Lipkins pycnometer): ρ = 0.9846 ? 8.81 × 10?4 × T; where ρ is in g.cm?3, temperature T is in Celsius, and the linearity correlation coefficient r is better than 0.9998. Their volume–temperature plots are also linear. As the plots of polyn-butyl methacrylate curved slightly near its glass transition (20°C), the quadratic equation ρ = 1.0402 ? 4.79 × 10?4 × T ? 1.46 × 10?6 × T2 (standard deviation = 1.57 × 10?3) has been suggested for the entire range of 30–150°C scrutinized in this study. The data have been utilized to derive thermal expansivity and some equation-of-state parameters of the polymers at the reference temperature (ca. 20°C).  相似文献   

12.
The influence of oil palm empty fruit bunch (OPEFB) fiber and oil palm empty fruit bunches grafted with poly(methyl methacrylate) (OPEFB‐g‐PMMA) on the tensile properties of poly(vinyl chloride) (PVC) was investigated. The OPEFB‐g‐PMMA fiber was first prepared with the optimum conditions for the grafting reaction, which were determined in our previous study. To produce composites, the PVC resin, OPEFB‐g‐PMMA fiber or ungrafted OPEFB fiber, and other additives were first dry‐blended with a laboratory blender before being milled into sheets on a two‐roll mill. Test specimens were then hot‐pressed, and then the tensile properties were determined. A comparison with the composite filled with the ungrafted OPEFB fiber showed that the tensile strength and elongation at break increased, whereas Young's modulus decreased, with the incorporation of 20 phr OPEFB‐g‐PMMA fiber into the PVC matrix. The trend of the tensile properties obtained in this study was supported by functional group analysis, glass‐transition temperature measurements, and surface morphological analysis. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

13.
We prepared a semi‐IPN (interpenetrating network)‐type solid polymer electrolyte (SPE) using poly (ethylene glycol)dimethacrylate (PEGDMA) as a polymer matrix containing a monocomb‐type poly(siloxane‐g‐allyl cyanide) and poly(ethylene glycol)dimethylether (PEGDME) for the lithium secondary battery. The poly(siloxane‐g‐allyl cyanide)s were prepared by a hydrosilation reaction of poly (methyl hydrosiloxane) with allyl cyanide and characterized by 1H NMR and FTIR. The semi‐IPN‐type electrolyte was prepared by thermal curing, and conductivities of samples were measured by impedance spectroscopy using an indium tin oxide (ITO) electrode. The ionic conductivity of the semi‐IPN‐polymer electrolyte was about 1.05 × 10?5 S cm?1 with 60 wt % of the poly(siloxane‐g‐allyl cyanide) and 6.96 × 10?4 S cm?1 with 50 wt % of the PEGDME and 10 wt % of the poly(siloxane‐g‐allyl cyanide) at 30°C. The SEM morphology of the cross section of the semi‐IPN‐polymer electrolyte film was changed from discontinuous network to continuous network as increasing the PEGDME content and decreasing the poly(siloxane‐g‐allyl cyanide) content. The mechanical stability was also enhanced when increasing the PEGDME content. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

14.
A new dihydroxy monomer, (E)‐1‐(4‐(4‐(4‐hydroxybenzylidene)thiocarbamoylaminobenzyl)phenyl)‐3‐(4‐hydroxybenzylidene)thiourea, was synthesized and polymerized with thiophene‐2,5‐dicarbonyl/terephthaloyl chloride. The structural characterization of the resulting polymers was carried out using spectral techniques (Fourier transform infrared and 1H NMR) along with a physical property investigation. Novel polyesters are readily soluble in various amide solvents and possess high molar mass of 112 × 103–133 × 103 g mol?1. The thermal stability was determined via 10% weight loss to be in the range 519–523 °C and the glass transition temperature was 286–289 °C. Electrically conducting poly(azomethine‐ester)‐blend‐polyaniline blends were prepared using mash‐blending and melt‐blending techniques. Materials obtained using the conventional melt‐blending approach generated an efficient conductive network compared with those produced by mash blending. Field emission scanning electron microscopy revealed a nano‐blend morphology for the melt‐blended system owing to increased physical interactions (hydrogen bonding and π–π stacking) between the two constituent polymers. Miscible blends of thiophene‐based poly(azomethine‐ester)‐blend‐polyaniline had superior conductivity (1.6–2.5 S cm?1) and thermal stability (T10 = 507 °C) even at low polyaniline concentration relative to reported thiophene/azomethine/polyaniline‐based structures. The new thermally stable and conducting nano‐blends could be candidates for various applications including optoelectronic devices. © 2012 Society of Chemical Industry  相似文献   

15.
3‐p‐Hydroxyphenyl‐6‐p‐hydroxybenzylidene cyclopentapyrazoline (III) and 3‐vanillyl‐7‐vanillylidene cyclopentapyrazoline (IV) were used as new starting materials for preparing new unsaturated polyesters. The polyesters were prepared by reacting (III) or (IV) with adipoyl, sebacoyl, isophthaloyl, and terephthaloyl dichlorides utilizing the interfacial polycondensation technique. The polyester samples have been characterized by elemental and spectral analyses. The polyesters have inherent viscosities of 0.55–0.97 dL/g. All the polyesters are semicrystalline and most of them are partially soluble in most common organic solvents but freely soluble in concentrated sulfuric acid. Their glass transition temperatures (Tg) range from 103.34 to 208.81°C, and the temperatures of 10% weight loss as high as 190 to 260°C in air, indicating that these aromatic polyesters have high Tg and excellent thermal stability. Doping with iodine dramatically raised the conductivity and produced dark brown colored semiconductive polymers with a maximum conductivity in the order of 3.1 × 10?7 Ω?1 cm?1. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
BACKGROUND: Succinic acid is a valuable four‐carbon organic chemical with applications in many fields. It was found that cell mass was an important factor in succinic acid production by metabolically engineered Escherichia coli strains. In this work, high cell density fermentation was investigated for succinic acid production by a metabolically engineered strain SD121 with ldhA, pflB, ptsG mutation and heterogenous cyanobacterial ppc overexpression. RESULTS: Under two‐stage cultivation, the controlled DO feeding strategy during the aerobic growth phase facilitated biomass up to a dry cell weight of 19.6 g L?1, and enhanced succinic acid production in the following anaerobic fermentation phase to a concentration of 116.2 g L?1. A near theoretical maximum succinic acid yield of 1.73 mol mol?1 glucose was achieved with an average productivity of 1.55 g L?1 h?1. CONCLUSION: The results indicated the potential advantage of high cell density fermentation for improvement of succinic acid production by E. coli. Copyright © 2010 Society of Chemical Industry  相似文献   

17.
Low‐molecular‐weight HOOC‐terminated poly(butylene adipate) prepolymer (PrePBA) and poly(butylene succinate) prepolymer (PrePBS) were synthesized through melt‐condensation polymerization from adipic acid or succinic acid with butanediol. The catalyzed chain extension of these prepolymers was carried out at 180–220°C with 2,2′‐(1,4‐phenylene)‐bis(2‐oxazoline) as a chain extender and p‐toluenesulfonic acid (p‐TSA) as a catalyst. Higher molecular weight polyesters were obtained from the catalyzed chain extension than from the noncatalyzed one. However, an improperly high amount of p‐TSA and a high temperature caused branching or a crosslinking reaction. Under optimal conditions, chain‐extended poly(butylene adipate) (PBA) with a number‐average molecular weight up to 29,600 and poly(butylene succinate) (PBS) with an intrinsic viscosity of 0.82 dL/g were synthesized. The chain‐extended polyesters were characterized by IR spectroscopy, 1H‐NMR spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis, wide‐angle X‐ray scattering, and tensile testing. DSC, wide‐angle X‐ray scattering, and thermogravimetric analysis characterization showed that the chain‐extended PBA and PBS had lower melting temperatures and crystallinities and slower crystallization rates and were less thermally stable than PrePBA and PrePBS. This deterioration of their properties was not harmful enough to impair their thermal processing properties and should not prevent them from being used as biodegradable thermoplastics. The tensile strength of the chain‐extended PBS was about 31.05 MPa. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
Hydrogels constitute a group of cross-linked polymeric materials with the capability of swelling and retaining large amounts of water without dissolving. In this work, the hydrogels were obtained by grafting the acrylic acid on cellulose from rice hulls and cross-linking it with glycerol, ethylene glycol, and polyethylene glycol (Mw?=?200 and 10,000 g mol?1). The samples were characterized using IR and Raman spectroscopy, the absence of the bands at 1636 and 1614 cm?1 (in IR) and at 1659 and 1637 cm?1 (in Raman), in the spectra of grafted cellulose and assigned to ν(C=C), indicated the polymerization process and the absence of the monomer residual. The cross-linking process was verified by the appearance of bands at 1090 cm?1 (IR) and 996 cm?1 (Raman), attributed to ν(C–O–C). Thermogravimetric analysis showed that the cross-linked sample with glycerol presented the lowest thermal stability. The molecular mass of CDClCC-g-AA was 55.56?±?5.21 kDa with an R2 of 0.9741 and the CDClCC average particle size of 694 nm. The topography and the average roughness of the samples were obtained by atomic force microscopy and the samples that were cross-linked with the polyethylene glycol presented greater roughness. The degree of swelling was lower in the sample cross-linked with ethylene glycol, which was related to its higher degree of cross-linking. Finally, the biocompatibility of the samples was studied by analyzing the toxic effect of the samples on human embryonic kidney cells, where results showed that samples cross-linked with ethylene glycol were non-toxic.  相似文献   

19.
The sample preparation pathway of solid polymer electrolytes (SPEs ) influences their thermal properties, which in turn governs the ionic conductivity of the materials especially for systems consisting of a crystallizable constituent. Majority of poly(ethylene oxide) (PEO)‐based SPEs with molar masses of PEO well above 104 g mol?1 (where PEO is crystallizable and should reach an asymptote in thermal behaviour) display molar mass dependence of the thermal properties and ionic conductivities in non‐equilibrium conditions, as reported in the literature. In this study, PEO of different viscosity‐molar masses (M η = 3 × 105, 6 × 105, 1 × 106, 4 × 106 g mol?1) and LiClO4 salt (0 to 16.7 wt%) were used. The SPEs were thermally treated under inert atmosphere above the melting temperature of PEO and then cooled down for subsequent isothermal crystallization for sufficient experimental time to develop morphology close to equilibrium conditions. The thermal properties (e.g. glass transition temperature, melting temperature, crystallinity) according to differential scanning calorimetry and the ionic conductivity obtained from impedance spectroscopy at room temperature (σ DC ~ 10?6 S cm?1) demonstrate insignificant variation with respect to the molar mass of PEO at constant salt concentration. These findings are in agreement with the PEO crystalline structures using X‐ray diffraction and ion ? dipole interaction by Fourier transform infrared results. © 2017 Society of Chemical Industry  相似文献   

20.
Effect of ethyl and n‐octyl branches on the properties of poly(ethylene adipate) (PEA) and poly(butylene succinate) (PBS) were investigated. Glass transition and melting temperature, crystallinity, melt viscosity, and spherulite growth rate were decreased with an increase in the degree of the chain branches. Introduction of ethyl branches as well as n‐octyl branches into PEA did not improve the tensile strength and modulus, while it reduced elongation and tear strength significantly. The presence of glycerol units less than 0.05 mol/mol of diacid units in PEA as well as in PSB also brought about damaging effects on the properties. Additional amount of glycerol units in the polyesters resulted in the formation of gel. However, addition of n‐octyl branches improved elongation and tear strength of PBS considerably without a notable decrease of tensile strength and modulus. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 547–555, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号