首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyacrylonitrile (PAN) hollow fibers were pretreated with ammonium dibasic phosphate and then further oxidized in air, carbonized in nitrogen, and activated with carbon dioxide. The effects of carbonization temperature of PAN hollow fiber precursor on the microstructure, specific surface, pore‐size distribution, and adsorption properties of PAN‐based carbon hollow fiber (PAN‐CHF) and PAN‐based activated carbon hollow fibers (PAN‐ACHF) were studied in this work. After the activation process, the surface area of the PAN‐ACHF increased very remarkably, reaching 900 m2 g?1 when carbonization is 1000°C, and the adsorption ratios to creatinine and VB12 of ACHF were much higher than those of CHF, especially to VB12. The different adsorption ratios to two adsorbates including creatinine and VB12 reflect the number of micropores and mesopores in PAN‐ACHF. The dominant pore sizes of mesopores in PAN‐ACHF are from 2 to 5 nm. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 2155–2160, 2005  相似文献   

2.
Kraft lignin obtained from the pulping of wood is an interesting new precursor material for carbon fiber production because of its high carbon content and ready availability. However, continuous spinning of softwood kraft lignin (SKL) has been impossible because of its insufficient softening characteristics and neat hardwood kraft lignin (HKL) has required extensive pretreatments to enable fiber formation. Softwood kraft lignin permeate (SKLP) and hardwood kraft lignin permeate (HKLP), fractionated by membrane filtration, were continuously melt spun into fibers. To improve the spinnability of SKL and HKL, HKLP was added as a softening agent. SKL‐ and HKL‐based fibers were obtained by adding 3–98 wt % HKLP. A suitable temperature range for spinning was 20–85°C above the Tg of the lignin samples, and this range gave a flawless appearance according to the SEM analysis. Smooth, homogeneous fibers of SKLP, HKLP, and SKL with HKLP were successfully processed into solid carbon fibers. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

3.
Lignin fibers with and without platinum were synthesized in a single step by electrospinning of lignin/ethanol/platinum acetyl acetonate and lignin/ethanol solutions, respectively. The fibers obtained were stabilized in air at low temperature to avoid fiber fusion during the subsequent carbonization process. The effect of the carbonization temperature (600-1000 °C) on surface chemistry, morphology, textural properties, and oxidation resistance of the final carbon fibers was studied. The carbonization process decreased the oxygen content of the fibers, increasing the carbon and surface platinum proportion and producing a well developed microporous structure. Carbon fibers with and without platinum with apparent surface areas of 1178 and 1195 m2/g, respectively, and micropore volumes of around 0.52 cm3/g were obtained. The diameter of the carbon fibers obtained is in the range of 400 nm to 1 μm. Carbon fibers with surface platinum of 0.6% in weight were obtained. The carbon fibers with and without platinum showed high oxidation resistance despite their highly developed porous structure.  相似文献   

4.
This study analyzes the influence of blend ratio and draw ratio on the fiber properties of blend fibers composed of poly (ethylene terephthalate), or PET, and polypropylene, or PP, (hereafter referred to as PET/PP conjugate fibers). For a comparison, PET and poly (butylene terephthalate), or PBT blends, (hereafter referred to as PET/PBT conjugate fibers) are also investigated. Various blend ratios of fibers are melt spun and drawn in a multistep drawing method. The conjugate fibers are evaluated using tenacity, Young's modulus, wide-angle X-ray diffraction, differential scanning calorimetry (DSC), and scanning electron microscopy (SEM) tests. The results show that multistep drawing using a lower first-step draw ratio provides a higher tenacity and Young's modulus. Furthermore, when the blend ratio is 75/25 in a PET/PP conjugate fiber and 50/50 in a PET/PBT conjugate fiber, the polymer components undergo a phase inversion phenomenon. A PP sub-micron (10?1 ~ 100 micron) fiber of about 0.0001 ~ 0.00017 tex in fineness, or about 0.4 ~ 0.5 micron in diameter, can be obtained when PET/PP conjugate fiber is treated with a 25% NaOH aqueous solution by weight. However, A PBT sub-micron fiber cannot be achieved using a PET/PBT conjugate fiber.  相似文献   

5.
Magnetically-separable hierarchically porous carbon monoliths with partially graphitized structures were synthesized through confinement self-assembly in polyurethane (PU) foam associated with a direct carbonization process from triblock copolymer F127, phenolic resol and ferric nitrate. It was observed that the magnetic Fe nanoparticles were embedded in the walls of graphitic porous carbon matrix, and the resulting materials exhibited hierarchically porous structure with macropores of 100–450 μm, mesopore size of 4.8 nm, BET surface area of 723 m2/g, pore volume of 0.46 cm3/g, and saturation magnetization of 3.1 emu/g. Using methylene blue as model dye pollutant in water, the carbon monolith materials showed high adsorption capacity of 190 mg/g, exhibiting excellent adsorption characteristics desirable for the application in adsorption of dyes and easy separation under an external magnetic field.  相似文献   

6.
In this work, a hierarchical Al2O3 carbon fiber (H-Al-CF) was successfully fabricated for application in the removal of iodide ions from water. High yields of Al2O3-coated carbon fiber were prepared by a sol–gel process using waste paper fibers as templates and carbon sources. The H-Al-CF is fabricated by an in-situ growth of AlOOH nanocrystals on the surface of carbon fibers following calcination. The synthesized H-Al-CF exhibits the developed porosity including mesopores and macropores, and has high-specific surface area (348.9 m2 g?1) and iodide ions' adsorption efficiency (92.3%). The in-situ growth process ensures that H-Al-CF has a more stable structure, further promoting higher adsorption efficiency.  相似文献   

7.
Polyacrylonitrile-based (PAN) ultra-fine fibers were made from electrospining with dimethylformamide as a solvent. And then the fibers were processed via pre-oxidization, carbonization, and steam activation to produce the PAN-based ultra-fine activated carbon fiber (UFACF) adsorbent. According to the specific surface area, pore volume, pore size distribution and phenol adsorption value, the effects of different factors on the yield of activation and adsorption properties of UFACF were investigated through the orthogonal experiment. TG, field emission-scanning electron microscope, FTIR, XRD were employed to characterize the morphology and structure evolvement of UFACF during thermal treatment process. At the optimal conditions, the yield of activation of UFACF was from 37.2 to 58.5%, the maximal specific surface area 1075.1 m2 g−1, and the maximal phenol adsorption value 377.1 mg g−1.  相似文献   

8.
Cherry stones are utilized as a precursor for the preparation of activated carbons by chemical activation with phosphoric acid (H3PO4). The activation process typically consists of successive impregnation, carbonization, and washing stages. Here, several impregnation variables are comprehensively studied, including H3PO4 concentration, number of soaking steps, H3PO4 recycling, washing of the impregnated material, and previous semi-carbonization. The choice of a suitable impregnation methodology opens up additional possibilities for the preparation of a wide variety of activated carbons with high yields and tailored porous structures. Microporous activated carbons with specific surface areas of ~800 mg?1 are produced, in which > 60% of the total pore volume is due to micropores. High surface areas of ~1500 m2 g?1 can be also developed, with micropore volumes being a 26% of the total pore volume. Interestingly, using the same amount of H3PO4, either carbons with surface areas of 791 and 337 m2 g?1 or only one carbon with a surface area of 640 m2 g?1 can be prepared. The pore volumes range very widely between 0.07–0.55, 0.01–0.90, and 0.09–0.79 cm3 g?1 for micropores, mesopores, and macropores, respectively.  相似文献   

9.
Ordered mesoporous carbon is synthesized by the organic–organic self-assembly method with novolac as carbon precursor and two kinds of triblock copolymers (Pluronic F127 and P123) as template. The hexagonal structure and a worm-hole structure are observed by TEM. The carbonization temperature is determined by TG and FT-IR. Characterization of physical properties of mesoporous carbon is executed by N2 absorption–desorption isotherms and XRD. The mass ratios of carbon precursor/template affect the textural properties of mesoporous carbon. The mesoporous carbon with F127/PF of 1/1 has lager surface area (670 m2 g?1), pore size (3.2 nm), pore volume (0.40 cm3 g?1), smaller microporous surface area (368 m2 g?1) and wall thickness (3.7 nm) compare to that with F127/PF of 0.5/1 (576 m2 g?1, 2.7 nm, 0.29 cm3 g?1, 409 m2 g?1 and 4.3 nm, respectively). The mesoporous carbon prepared by carbonization at high temperature (700 °C) exhibits lager surface area, lower pore size and pore volume than the corresponding one obtained at 500 °C. The structure and order of the resulting materials are notably affected with types of templates. The mesoporous carbon with P123 as template exhibits worm-hole structure compare to that with F127 as template with hexagonal structure. In general, the pore size of mesoporous carbon with novolac as precursor is smaller than that with resorcinol–formaldehyde as precursor.  相似文献   

10.
《分离科学与技术》2012,47(16):4023-4035
Abstract

Activated carbon (AC) was chosen for carrying potassium copper hexacyanoferrate (KCuCF) to prepare a new Cs-selective material. The adsorbent was prepared by repetitious batch precipitation reaction of Cu2+ with [Fe(CN)6]4?. Characterization analyses identified the backbone formula of the activated carbon-supported KCuCF with K2Cu[Fe(CN)6], and shown the successful loading of KCuCF microcrystals on the porous carbon substrate with a loading percentage of 12.5 wt%, and with BET specific surface area and a total pore volume of 527.8 m2/g and 0.38 cm3/g for AC and 160.8 m2/g and 0.16 cm3/g for KCuCF-loaded activated carbon (KCuCF-AC), respectively. The optimal Cs adsorption capacity of about 0.46 mmol·g?1 was observed between the HNO3 concentration of 0.5–1.5 M, and the capacity even reached to 0.38 mmol·g?1 in the presence of a large amount of competing cations. The results indicate that activated carbon has no significant effect on the selectivity of the as-synthesized composite.  相似文献   

11.
This article provides evidence that jatropha seed coat residues can be used as a carbon source for preparing activated carbons that have good adsorption properties for iodine and methylene blue. Activated carbons were prepared using three different methods of activation, physical, chemical, and physico-chemical, for a range of activation temperatures (600°, 700°, 800°, and 900°C) and activation hold times (1, 2, and 3 h). The highest BET surface area (1479 m2 g?1) and the highest iodine adsorption (1511 mg g?1) were obtained with physico-chemical activation at a temperature of 900°C and a hold time of 2 h. This activated carbon gave higher BET surface area and iodine adsorption than commercial activated carbon (1169.1 m2 g?1 and 1076 mg g?1). The activated carbons prepared by physico-chemical activation at 900°C and 2 h were then tested for adsorption of methylene blue at a range of concentrations of methylene blue (100, 200, 300, 400, and 500 mg L?1). It was found that a Langmuir isotherm gave a better fit (R 2 = 0.999) to the observed adsorptions than a Freundlich isotherm (R 2 = 0.884). For the adsorption kinetics, a pseudo-second-order model gave a better fit (R 2 > 0.998, Δq e  = 3.7%) than a pseudo-first-order model (R 2 ≈ 0.95, Δq e  = 85.6%). These results suggest that chemisorption is the rate-controlling step for the adsorption of methylene blue. The experimental results show that jatropha seed coat is a lignocellulosic waste precursor for preparation of activated carbon that is an alternative source for preparation of commercial-grade activated carbons.  相似文献   

12.
A sulfonated (SO3H-bearing) carbon catalyst with mesoporous structure and high specific surface area is successfully prepared by impregnating the cellulosic precursor (wood powder) with ZnCl2 prior to activation and sulfonation. The specific surface area of the porous carbon catalyst thus prepared is also found to increase with carbonization temperature to a maximum of 1,560 m2 g?1 at ca. 773 K. Structural analyses reveal that the porous carbon catalysts carbonized at temperatures higher than 723 K contain high densities of micro- and mesopores. The porous carbon catalyst exhibits high catalytic performance for the esterification of acetic acid (343 K), the activity for which is dependent only on the acid density. The porous carbon catalyst also exhibits high catalytic activity for the benzylation of toluene, whereas non-porous sulfonated carbon has very limited activity for this reaction. The activity for the benzylation of toluene is dependent on both the specific surface area and the acid density of the sulfonated porous carbon catalyst.  相似文献   

13.
Hierarchical porous nitrogen-doped carbon (HPNC) materials are synthesized through one-step carbonization of polyimide using triblock copolymer P123 as mesoporous template. The microstructure, chemical composition and CO2 adsorption behaviors are investigated in detail. The results show that HPNC materials have hierarchical micro-/mesopore structures, high specific surface area of 579 m2/g, large pore volume of 0.34 cm3/g, and nitrogen functional groups (5.2 %). HPNC materials exhibit high CO2 uptake of 5.56 mmol/g at 25 °C and 1 bar, which is higher than those of previously reported nitrogen-doped porous carbon materials. After 5 cycles the value of CO2 adsorption uptakes is 5.28 mmol/g, which is approximately 95 % of the original adsorption capacity. The estimated CO2/N2 selectivity of HPNC materials is 17, revealing great promise for practical CO2 adsorption and separation applications. The efficient CO2 uptake and enhanced CO2/N2 selectivity are due to the combination of nitrogen-doped and hierarchical porous structures of HPNC materials.  相似文献   

14.
BACKGROUND: Glycerol was used to produce efficient adsorbents with a high surface area for organic contaminants by a combined process based on polymerization, carbonization and activation. RESULTS: Glycerol and sulfuric acid catalyst at concentrations of 0, 0.5, 1, 2 and 5 mol% were heated to 150 °C to form polyglycerol, which was then decomposed at 580 °C and activated with CO2 at 850 °C. The resulting activated carbons had a high specific area (1630 m2g?1) and high adsorption capacity of methylene blue used as a model organic contaminant. This process was also used to produce a special composite adsorbent based on expanded vermiculite (EV) coated with activated carbon. These composites were produced by impregnation of EV with glycerol followed by polymerization, thermal decomposition and activation with CO2 to produce up to 25 wt% carbon and a surface area of 835 m2g?1. CONCLUSIONS: The carbon layer present in the EV composite/activated carbon (GVE4CA2) produces a remarkable increase in the methylene blue adsorption capacity of the expanded vermiculite and strongly decreases undesirable water absorption. Copyright © 2012 Society of Chemical Industry  相似文献   

15.
Aimed to prepare high efficient dye sorbent and control water pollution, herein we utilized solvothermal method to synthesize porous polyimide (PI) polymer with a large surface area using DMSO as solvent. Unlike the solid-state thermal polymerized PI with low surface area of 5 m2g?1, this PI material prepared in DMSO solvent possessed a large surface area of 430 m2g?1, which was beneficial for adsorption of organic dye in waste water, achieving a max MO adsorption of 200 mg g?1 three times higher than that of multiwalled carbon nanotube. The adsorption kinetics of dye molecules on PI was investigated in detail and the R2 value of 0.99071 for pseudo-second-order model confirms the adsorption was fitted best with Langmuir isotherm.  相似文献   

16.
Novolacs phenolic-resin (PF) was easily polycondensed into polymeric powders with sizes and morphologies ranging from microspheres to nanoparticles by a simple solvothermal process without adding any crosslinking agent. Activating the highly divided PF powders by CO2 resulted in nanosize activated carbons with high specific surface area (2092 m2 g?1) and large pore volume (1.33 cm3 g?1) while preserving a high carbon yield of about 38 wt%. As for adsorption tests, the micropore-dominated activated nanocarbons exhibited fast and high adsorption capabilities towards both Cr(VI) ions and bulky rhodamine B molecules due to their much improved external surface area and the greatly shortened intra-particle diffusion distance. The equilibrium adsorption amounts of Cr(VI) and RB on the activated nanocarbons as estimated by the Langmuir model were 200 and 990 mg g?1, achieved within an adsorption time of 30 and 360 min, respectively.  相似文献   

17.
A novel carbon aerogel with network pore and surface group of hydroxyl was prepared from cellulose colloid, through sol-gel reaction, freeze-drying and carbonization. Surfactant like isooctyl alcohol ether phosphate was taken as structure inducer in sol-gel reaction, for construction of porous network in the prepared samples. Characteristic of a specific area about 725.12 m2/g and total pore volume about 0.64 cm3/g, the prepared cellulose-based carbon aerogel of CCA2, has a maximum capacity about 55.25 mg/g for Cu2+ in neutral aqueous solution. Its adsorption equilibrium can be reached within 10 min in an aqueous solution of pH7.0 at 25?°C, while desorption of Cu2+ need about 1 h eluted by HCl or HNO3 solution of 0.01 M. And regeneration of the carbon aerogel in adsorption of Cu2+ can be repeated for five times, remaining 96% adsorption capacity. It is also found in adsorption process the kinetics nicely follows pseudo-second-order rate expression, and the isotherm fits Langmuir model.  相似文献   

18.
《分离科学与技术》2012,47(14):2180-2193
ABSTRACT

Novel activated carbon (AC) derived from bacterial cellulose (BC-AC) was produced by phosphoric acid activation at a carbonization temperature of 500 °C. BC-AC possesses mesoporous structures of 2.3 nm in diameter, porosity of 1.0 cm3/g and surface area of 1734 m2/g with high thermal stability between 100 and 500 °C. BC-AC could be used as an effective adsorbent for removing methylene blue (MB) from aqueous solutions with the maximum adsorption capacity of 505.8 mg/g. BC-AC presented physisorption and the adsorption of MB was most likely to be a monolayer adsorption. The Redlich–Peterson model displayed the best fit with the experimental data.  相似文献   

19.
In the present work, mesoporous carbon monoliths with worm-hole structure had been synthesized through hydrothermal reaction by using amphiphilic triblock copolymer F127 and P123 as templates and resole as carbon precursor. Synthesis conditions, carbonization temperature and pore structure were studied by Fourier transform infrared, thermogravimetric analysis, transmission electron microscopy and N2 adsorption–desorption. The results indicated that the ideal pyrolysis temperature of the template is 450 °C. The organic ingredients were almost removed after further carbonized at 600 °C and the mesoporous carbon monoliths with worm-hole structure were obtained. The mesoporous carbon synthesized with P123 as single template exhibited larger pore size (6.6 nm), higher specific surface area (747 m2 g?1), lower pore ratio (45.9 %) in comparison with the mesoporous carbon synthesized with F127 as single template (with the corresponding value of 4.9 nm, 681 m2 g?1, 49.6 %, respectively), and also exhibited wider pore size distribution and lower structure regularity. Moreover, the higher mass ratio of template P123/resole induced similar pore size, larger specific surface area and lower pore ratio at the same synthesizing condition. It was also found that the textural structure of mesoporous carbon was affect by calcination atmosphere.  相似文献   

20.
In order to optimize the use of residues of enzymatic hydrolysis of corn stalk (REHCS) and explore the low‐cost and sustainable raw material substitute for carbon fibers, three types of lignin samples were extracted from REHCS by various extraction methods, and then they were converted into carbon fibers (CFs) by electrospinning, thermostabilization, and carbonization under the same process conditions. The microstructure and mechanical properties of the three types of carbonized fibers were different. The CFs from the ethanol organosolv lignin were actually smooth and brittle carbon films. The CFs from the formic acid/acetic acid organosolv lignin had microscopic pores, causing poor mechanical properties. Comparatively, the CFs from the alkaline lignin demonstrated preferable microstructure and mechanical properties. The reasons for the differences were analyzed by characterizing the lignin samples, precursor fibers, and resultant CFs. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45580.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号